Learn More
In this paper, we introduce SPIRIT (Streaming Pattern dIscoveRy in multIple Time-series). Given n numerical data streams, all of whose values we observe at each time tick t, SPIRIT can incrementally find correlations and hidden variables, which summarise the key trends in the entire stream collection. It can do this quickly, with no buffering of stream(More)
Modern applications such as Internet traffic, telecommunication records, and large-scale social networks generate massive amounts of data with multiple aspects and high dimensionalities. Tensors (i.e., multi-way arrays) provide a natural representation for such data. Consequently, tensor decompositions such as Tucker become important tools for summarization(More)
How do we find patterns in author-keyword associations, evolving over time? Or in Data Cubes, with product-branch-customer sales information? Matrix decompositions, like principal component analysis (PCA) and variants, are invaluable tools for mining, dimensionality reduction, feature selection, rule identification in numerous settings like streaming data,(More)
A predictive spatio-temporal query retrieves the set of moving objects that will intersect a query window during a future time interval. Currently, the only access method for processing such queries in practice is the TPR-tree. In this paper we first perform an analysis to determine the factors that affect the performance of predictive queries and show that(More)
How do we find patterns in author-keyword associations, evolving over time? Or in data cubes (tensors), with product-branchcustomer sales information? And more generally, how to summarize high-order data cubes (tensors)? How to incrementally update these patterns over time? Matrix decompositions, like principal component analysis(More)
This paper aims at discovering community structure in rich media social networks, through analysis of time-varying, multi-relational data. Community structure represents the <i>latent</i> social context of user actions. It has important applications in information tasks such as search and recommendation. Social media has several unique challenges. (a) In(More)
Low-rank approximations of the adjacency matrix of a graph are essential in finding patterns (such as communities) and detecting anomalies. Additionally, it is desirable to track the low-rank structure as the graph evolves over time, efficiently and within limited storage. Real graphs typically have thousands or millions of nodes, but are usually very(More)
Many real applications can be modeled using bipartite graphs, such as users vs. files in a P2P system, traders vs. stocks in a financial trading system, conferences vs. authors in a scientific publication network, and so on. We introduce two operations on bipartite graphs: 1) identifying similar nodes (Neighborhood formation), and 2) finding abnormal nodes(More)