Learn More
In this paper, we introduce SPIRIT (Streaming Pattern dIscoveRy in multIple Time-series). Given n numerical data streams, all of whose values we observe at each time tick t, SPIRIT can incrementally find correlations and hidden variables, which summarise the key trends in the entire stream collection. It can do this quickly, with no buffering of stream(More)
Modern applications such as Internet traffic, telecommunication records, and large-scale social networks generate massive amounts of data with multiple aspects and high dimensionalities. Tensors (i.e., multi-way arrays) provide a natural representation for such data. Consequently, tensor decompositions such as Tucker become important tools for summarization(More)
A predictive spatio-temporal query retrieves the set of moving objects that will intersect a query window during a future time interval. Currently, the only access method for processing such queries in practice is the TPR-tree. In this paper we first perform an analysis to determine the factors that affect the performance of predictive queries and show that(More)
How do we find patterns in author-keyword associations, evolving over time? Or in Data Cubes, with product-branch-customer sales information? Matrix decompositions, like principal component analysis (PCA) and variants, are invaluable tools for mining, dimensionality reduction, feature selection, rule identification in numerous settings like streaming data,(More)
In large social networks, nodes (users, entities) are influenced by others for various reasons. For example, the colleagues have strong influence on one's work, while the friends have strong influence on one's daily life. How to differentiate the social influences from different angles(topics)? How to quantify the strength of those social influences? How to(More)
Huge datasets are becoming prevalent; even as researchers, we now routinely have to work with datasets that are up to a few terabytes in size. Interesting real-world applications produce huge volumes of messy data. The mining process involves several steps, starting from pre-processing the raw data to estimating the final models. As data become more(More)
How can we find communities in dynamic networks of socialinteractions, such as who calls whom, who emails whom, or who sells to whom? How can we spot discontinuity time-points in such streams of graphs, in an on-line, any-time fashion? We propose GraphScope, that addresses both problems, using information theoretic principles. Contrary to the majority of(More)
Many real applications can be modeled using bipartite graphs, such as users vs. files in a P2P system, traders vs. stocks in a financial trading system, conferences vs. authors in a scientific publication network, and so on. We introduce two operations on bipartite graphs: 1) identifying similar nodes (Neighborhood formation), and 2) finding abnormal nodes(More)
How do we find patterns in author-keyword associations, evolving over time? Or in data cubes (tensors), with product-branchcustomer sales information? And more generally, how to summarize high-order data cubes (tensors)? How to incrementally update these patterns over time? Matrix decompositions, like principal component analysis(More)
Low-rank approximations of the adjacency matrix of a graph are essential in finding patterns (such as communities) and detecting anomalies. Additionally, it is desirable to track the low-rank structure as the graph evolves over time, efficiently and within limited storage. Real graphs typically have thousands or millions of nodes, but are usually very(More)