Learn More
Properties of whole-cell glycine currents (IGly) of ventral tegmental area (VTA) neurons from 3- to 7-day old Sprague-Dawley rats were investigated with the patch-clamp technique. Ninety-three percent of the 126 neurons examined produced IGly in response to glycine. For 70% of these neurons, IGly did not decay in response to a threshold concentration of(More)
Elevated levels of the excitotoxic amino acids, glutamate and aspartate, have been implicated in the pathogenesis of neuronal injury and death induced by cerebral ischemia. This study evaluated the contribution of reversed high-affinity, Na(+)-dependent, glutamate transport to the ischemia-evoked release of glutamate and aspartate using(More)
The potentiation of glycine-induced responses by ethanol (EtOH) was studied in neurons freshly dissociated from the ventral tegmental area (VTA) of 5- to 14-day-old postnatal rats using whole-cell and gramicidin-perforated patch-clamp techniques. Under current-clamp conditions, EtOH increased glycine-induced membrane depolarization and action potential(More)
The electrophysiological and pharmacological properties of nicotinic acetylcholine receptors (nAChRs) were studied in guinea pig small intestinal myenteric neurons maintained in culture or in acutely isolated preparations. Acetylcholine and nicotine caused inward currents that desensitized in approximately 4 s. The current-voltage (I-V) relationship(More)
Diabetic cardiomyopathy is characterized by cardiac dysfunction and altered level/function of insulin-like growth factor I (IGF-I). Both endogenous and exogenous IGF-I have been shown to effectively alleviate diabetes-induced cardiac dysfunction and oxidative stress. This study was designed to examine the effect of cardiac overexpression of IGF-I on(More)
BACKGROUND & AIMS Transit of fecal material through the human colon takes > or =30 hours, whereas transit through the small intestine takes 24 hours. The mechanisms underlying colonic storage and slow transit have yet to be elucidated. Our aim was to determine whether an intrinsic neural mechanism underlies these phenomena. METHODS Recordings were made(More)
The effects of cocaine on glycine-induced Cl- current (I(GLY)) of single neurons, freshly isolated from the rat hippocampal CA1 area, were studied with conventional whole-cell recording under voltage-clamp conditions. Cocaine depressed I(GLY) in a concentration-dependent manner, with an IC50 of 0.78 mM. Preincubation with 1 mM cocaine alone had no effect on(More)
  • J Ren
  • 2000
OBJECTIVE Insulin-like growth factor I (IGF-1) stimulates cardiac growth and contraction, but resistance to its action has been reported in diabetes. This study was to determine if IGF-1-induced cardiac contractile action is altered in rats genetically predisposed to diabetes. METHOD Ventricular myocytes were isolated from spontaneously biobreeding(More)
Cardiac excitation-contraction (E-C) coupling abnormalities in chemically induced diabetes have been well defined. Heart dysfunction has also been reported in diabetes of genetic origin. The purpose of this study was to determine whether heart dysfunction in genetically predisposed diabetes is attributable to impaired E-C coupling at the cellular level.(More)
A rat four vessel occlusion model was utilized to examine the effects of ischemia/reperfusion on cortical window superfusate levels of amino acids, glucose, and lactate. Superfusate aspartate, glutamate, phosphoethanolamine, taurine, and GABA were significantly elevated by cerebral ischemia, then declined during reperfusion. Other amino acids were affected(More)