Jim Kadin

Learn More
This paper is a study of the existence of polynomial time Boolean connective functions for languages. A language L has an AND function if there is a polynomial time f such that f (x, y) ∈ L ⇐⇒ x ∈ L and y ∈ L. L has an OR function if there is a polynomial time g such that g(x, y) ∈ L ⇐⇒ x ∈ L or y ∈ L. While all NP complete sets have these functions, Graph(More)
We show that if the Boolean hierarchy collapses to level k, then the polynomial hierarchy collapses to BH 3 (k), where BH 3 (k) is the k th level of the Boolean hierarchy over P 2. This is an improvement over the known results 3], which show that the polynomial hierarchy would collapse to P NP NP O(log n)]. This result is signiicant in two ways. First, the(More)
We study FP NP k , the class of functions that can be computed with nonadaptive queries to an NP oracle. We show that optimization problems stemming from the known NP complete sets, where the optimum is taken over a polynomially bounded range, are hard for FP NP k. This is related to (and, in some sense, extends) work of Chen and Toda CT91]. In addition, it(More)
1 About Relativization In this column we explore what relativization says about space bounded computations and what recent results about space bounded computations say about relativization. There is a strong belief in computational complexity circles that problems which can be relativized in two contradictory ways are very hard to solve. We believe that(More)
We study FP NP k , the class of functions that can be computed in polynomial time with nonadaptive queries to an NP oracle. This is motivated by the question of whether it is possible to compute witnesses for NP sets within FP NP k. The known algorithms for this task all require sequential access to the oracle. On the other hand, there is no evidence known(More)