Jim F. White

Learn More
Neurotensin (NTS) is a 13-amino-acid peptide that functions as both a neurotransmitter and a hormone through the activation of the neurotensin receptor NTSR1, a G-protein-coupled receptor (GPCR). In the brain, NTS modulates the activity of dopaminergic systems, opioid-independent analgesia, and the inhibition of food intake; in the gut, NTS regulates a(More)
G protein-coupled receptors (GPCRs) mediate the perception of smell, light, taste, and pain. They are involved in signal recognition and cell communication and are some of the most important targets for drug development. Because currently no direct structural information on high-affinity ligands bound to GPCRs is available, rational drug design is limited(More)
G protein-coupled receptors (GPCRs) have been found as monomers but also as dimers or higher-order oligomers in cells. The relevance of the monomeric or dimeric receptor state for G protein activation is currently under debate for class A rhodopsin-like GPCRs. Clarification of this issue requires the availability of well defined receptor preparations as(More)
Conformational thermostabilisation of G protein-coupled receptors is a successful approach for their structure determination. We have recently determined the structure of a thermostabilised neurotensin receptor NTS1 in complex with its peptide agonist and here we describe the strategy for the identification and combination of the 6 thermostabilising(More)
Membrane lipids have been implicated to influence the activity of G-protein-coupled receptors (GPCRs). Almost all of our knowledge on the role of lipids on GPCR and G protein function comes from work on the visual pigment rhodopsin and its G protein transducin, which reside in a highly specialized membrane environment. Thus, insight gained from rhodopsin(More)
Structural studies on G-protein-coupled receptors have been hampered for many years by their instability in detergent solution and by the number of potential conformations that receptors can adopt. Recently, the structures of the beta(1) and beta(2) adrenergic receptors and the adenosine A(2a) receptor were determined in the antagonist-bound state, a(More)
Influenza NS2 protein was expressed inSaccharomyces cerevisiae using a copper-inducible promoter. The protein produced had a molecular weight of 13 kDa, was reactive with anti-NS2 antiserum and was localised to the yeast cell nucleus. Two-hybrid analysis identified a direct protein-protein interaction between NS2 and the M2 protein of the virus, involving(More)
Vpr is a virion-associated protein of human immunodeficiency virus type 1 (HIV-1) whose function in acquired immune deficiency syndrome (AIDS) has been uncertain. We previously employed yeast as a model to examine the effects of Vpr on basic cellular functions; intracellular Vpr was shown to cause cell-growth arrest and structural defects, and these effects(More)
Recombinant influenza neuraminidase (NA, subtype 2, A/NT/60/68) was produced by recombinant baculovirus-infected insect cells. The recombinant NA retained enzyme activity and was located on the cell surface. Enzyme activity was both cell-associated and in the cell free supernatant; maximal NA activity was found in the supernatant. Recombinant NA was(More)
Neutrophils play a key role in the immediate non-specific immune response, and defects in their function increase host susceptibility to a range of infective agents. However, excess activation and/or delayed clearance of these cells from an inflamed site can lead to significant tissue damage. Neutrophil priming by agents such as endotoxin, granulocyte(More)