Jillian M Buriak

Learn More
Desorption mass spectrometry has undergone significant improvements since the original experiments were performed more than 90 years ago. The most dramatic change occurred in the early 1980s with the introduction of an organic matrix to transfer energy to the analyte. This reduces ion fragmentation but also introduces background ions from the matrix. Here(More)
In order to harness the potential of block copolymers to produce nanoscale structures that can be integrated with existing silicon-based technologies, there is a need for compatible chemistries. Block copolymer nanostructures can form a wide variety of two-dimensional patterns, and can be controlled to present long-range order. Here we use the(More)
Block copolymer self-assembly is an innovative technology capable of patterning technologically relevant substrates with nanoscale precision for a range of applications from integrated circuit fabrication to tissue interfacing, for example. In this article, we demonstrate a microwave-based method of rapidly inducing order in block copolymer structures. The(More)
Block copolymers can be used to template large arrays of nanopatterns with periodicities equal to the characteristic spacing of the polymer. Here we demonstrate a technique capitalizing on the multilayered arrangement of cylindrical domains to effectively double the pattern density templated by a given polymer. By controlling the initial thickness of the(More)
Silver nanowire mesh electrodes represent a possible mass-manufacturable route toward transparent and flexible electrodes for plastic-based electronics such as organic photovoltaics (OPVs), organic light emitting diodes (OLEDs), and others. Here we describe a route that is based upon spray-coated silver nanowire meshes on polyethylene terephthalate (PET)(More)
Inverted organic photovoltaic cells have been fabricated based on vertical C(60) nanocolumns filled with spin-coated poly[3-(4-carboxybutyl)thiophene-2,5-diyl] (P3CBT). These C(60) nanocolumns were prepared via glancing angle deposition (GLAD), an efficient synthetic approach that controls the morphology of the resulting film, including intercolumn spacing,(More)
Crystalline silicon forms the basis of just about all computing technologies on the planet, in the form of microelectronics. An enormous amount of research infrastructure and knowledge has been developed over the past half-century to construct complex functional microelectronic structures in silicon. As a result, it is highly probable that silicon will(More)
Block copolymer thin films can be used as soft templates for a wide range of surfaces where large area patterns of nanoscale features are desired. The cylindrical domains of acid-sensitive, self-assembled monolayers of polystyrene-poly(2-vinylpyridine) block copolymers on silicon surfaces were utilized as structural elements for the production of parallel(More)