Learn More
One of the major problems in pattern mining is the explosion of the number of results. Tight constraints reveal only common knowledge, while loose constraints lead to an explosion in the number of returned patterns. This is caused by large groups of patterns essentially describing the same set of transactions. In this paper we approach this problem using(More)
Vehicular travel is increasing throughout the world, particularly in large urban areas. Therefore the need arises for simulating and optimizing traffic control algorithms to better accommodate this increasing demand. In this paper we study the simulation and optimization of traffic light controllers in a city and present an adaptive optimization algorithm(More)
—Given a snapshot of a large graph, in which an infection has been spreading for some time, can we identify those nodes from which the infection started to spread? In other words, can we reliably tell who the culprits are? In this paper we answer this question affirmatively, and give an efficient method called NETSLEUTH for the well-known(More)
  • Jilles Vreeken, John-Jules Ch, Marco A Meyer, Wiering, Simon Bovet
  • 2003
We investigated the applicability of the recently introduced Liquid State Machine model for the recognition of real-world temporal patterns on noisy continuous input streams. After first exploring more traditional techniques for temporal pattern classification, we provide a brief introduction of spiking neuron models. These can be used as the dynamic(More)
How can we succinctly describe a million-node graph with a few simple sentences? How can we measure the 'importance' of a set of discovered subgraphs in a large graph? These are exactly the problems we focus on. Our main ideas are to construct a 'vocabulary' of subgraph-types that often occur in real graphs (e.g., stars, cliques, chains), and from a set of(More)
Exploratory search is becoming more common as the web is used more increasingly as a medium for learning and discovery. Compared to traditional known-item search, exploratory search is more challenging and difficult to support because it initiates with poorly defined search goals, while the user knowledge and information-needs constantly change throughout(More)
— Optimal traffic light control is a multi-agent decision problem, for which we propose to use reinforcement learning algorithms. Our algorithm learns the expected waiting times of cars for red and green lights at each intersection, and sets the traffic lights to green for the configuration maximizing individual car gains. For testing our adaptive traffic(More)
An ideal outcome of pattern mining is a small set of informative patterns, containing no redundancy or noise, that identifies the key structure of the data at hand. Standard frequent pattern miners do not achieve this goal, as due to the pattern explosion typically very large numbers of highly redundant patterns are returned. We pursue the ideal for(More)