Jilles Vreeken

Learn More
One of the major problems in pattern mining is the explosion of the number of results. Tight constraints reveal only common knowledge, while loose constraints lead to an explosion in the number of returned patterns. This is caused by large groups of patterns essentially describing the same set of transactions. In this paper we approach this problem using(More)
Optimal traffic light control is a multi-agent decision problem, for which we propose to use reinforcement learning algorithms. Our algorithm learns the expected waiting times of cars for red and green lights at each intersection, and sets the traffic lights to green for the configuration maximizing individual car gains. For testing our adaptive traffic(More)
Spotting anomalies in large multi-dimensional databases is a crucial task with many applications in finance, health care, security, etc. We introduce COMPREX, a new approach for identifying anomalies using pattern-based compression. Informally, our method finds a collection of dictionaries that describe the norm of a database succinctly, and subsequently(More)
One of the major problems in frequent item set mining is the explosion of the number of results: it is difficult to find the most interesting frequent item sets. The cause of this explosion is that large sets of frequent item sets describe essentially the same set of transactions. In this paper we approach this problem using the MDL principle: the best set(More)
Data analysis is an inherently iterative process. That is, what we know about the data greatly determines our expectations, and hence, what result we would find the most interesting. With this in mind, we introduce a well-founded approach for succinctly summarizing data with a collection of itemsets; using a probabilistic maximum entropy model, we(More)
Given a snapshot of a large graph, in which an infection has been spreading for some time, can we identify those nodes from which the infection started to spread? In other words, can we reliably tell who the culprits are? In this paper we answer this question affirmatively, and give an efficient method called NETSLEUTH for the well-known(More)
How can we succinctly describe a million-node graph with a few simple sentences? How can we measure the ‘importance’ of a set of discovered subgraphs in a large graph? These are exactly the problems we focus on. Our main ideas are to construct a ‘vocabulary’ of subgraph-types that often occur in real graphs (e.g., stars, cliques, chains), and from a set of(More)