Learn More
Phytate (inositol hexakisphosphate, IP6) is a regulator of intracellular signaling, a highly abundant animal antinutrient, and a phosphate store in plant seeds. Here, we report a requirement for inositol polyphosphate kinases, AtIPK1 and AtIPK2beta, for the later steps of phytate synthesis in Arabidopsis thaliana. Coincident disruption of these kinases(More)
Despite the high deposition of inositol hexakisphosphate (IP(6)), also known as phytate or phytin, in certain plant tissues little is known at the molecular level about the pathway(s) involved in its production. In budding yeast, IP(6) synthesis occurs through the sequential phosphorylation of I(1,4,5)P(3) by two gene products, Ipk2 and Ipk1, a IP(3)/IP(4)(More)
The phosphoinositide pathway and inositol-1,4,5-trisphosphate (InsP(3)) are implicated in plant responses to stress. To determine the downstream consequences of altered InsP(3)-mediated signaling, we generated transgenic Arabidopsis thaliana plants expressing the mammalian type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), which specifically(More)
A genetic approach was used to increase phosphatidylinositol(4,5)bisphosphate [PtdIns(4,5)P2] biosynthesis and test the hypothesis that PtdInsP kinase (PIPK) is flux limiting in the plant phosphoinositide (PI) pathway. Expressing human PIPKIalpha in tobacco (Nicotiana tabacum) cells increased plasma membrane PtdIns(4,5)P2 100-fold. In vivo studies revealed(More)
Here, we compare the regulation and localization of the Arabidopsis type III phosphatidylinositol (PtdIns) 4-kinases, AtPI4Kalpha1 and AtPI4Kbeta1, in Spodoptera frugiperda (Sf9) insect cells. We also explore the role of the pleckstrin homology (PH) domain in regulating AtPI4Kalpha1. Recombinant kinase activity was found to be differentially sensitive to(More)
Recent discoveries that provide a link between inositol phosphate (IP) signaling and fundamental cellular processes evoke many exciting new hypotheses about IP function, and underscore the importance of understanding how IP synthesis is regulated. Central to studies of IP metabolism is the essential development of efficient, fast, and reproducible methods(More)
  • 1