Jill M. Hanson

Learn More
Abundance indices of southern Gulf Leucoraja ocellata residing in Northumberland Strait, Canada, declined from 2001 to 2005, but increased during 2006 to 2008. Catch rates in 2009 were the lowest in the time series. The size of the area occupied in Northumberland Strait varied with changes in the abundance indices. Leucoraja ocellata were primarily caught(More)
The goals of this study were to document the size and age structure, size at maturity, ovarian fecundity and diet of the endangered population of winter skate Leucoraja ocellata that resides in the southern Gulf of St Lawrence (SGSL). The maximum size observed for SGSL L. ocellata was 68 cm total length (LT ) but >99% of animals caught were <60 cm LT .(More)
The DIII-D tokamak magnetic diagnostic system [E. J. Strait, Rev. Sci. Instrum. 77, 023502 (2006)] has been upgraded to significantly expand the measurement of the plasma response to intrinsic and applied non-axisymmetric "3D" fields. The placement and design of 101 additional sensors allow resolution of toroidal mode numbers 1 ≤ n ≤ 3, and poloidal(More)
A feedback system for controlling external, long-wavelength magnetohydrodynamic activity is described. The system is comprised of a network of localized magnetic pickup and control coils driven by four independent, low-latency field-programable gate array controllers. The control algorithm incorporates digital spatial filtering to resolve low mode number(More)
An extensive set of magnetic diagnostics in DIII-D is aimed at measuring non-axisymmetric "3D" features of tokamak plasmas, with typical amplitudes ∼10(-3) to 10(-5) of the total magnetic field. We describe hardware and software techniques used at DIII-D to condition the individual signals and analysis to estimate the spatial structure from an ensemble of(More)
By arranging the particle first banana orbits to pass near a distant detector, the light ion beam probe (LIBP) utilizes orbital deflection to probe internal fields and field fluctuations. The LIBP technique takes advantage of (1) the in situ, known source of fast ions created by beam-injected neutral particles that naturally ionize near the plasma edge and(More)
Active measurements of the plasma stability in tokamak plasmas reveal the importance of kinetic resonances for resistive wall mode stability. The rotation dependence of the magnetic plasma response to externally applied quasistatic n=1 magnetic fields clearly shows the signatures of an interaction between the resistive wall mode and the precession and(More)
The seventh in a series of articles providing basic information on legal issues facing people and businesses that operate in computing-related markets explores ways to raise capital. An audio podcast is available at http://youtu.be/3lYpjoONWn8. It provides basic information on legal issues facing people and businesses that operate in computing-related(More)
Magnetic feedback control of the resistive-wall mode has enabled the DIII-D tokamak to access stable operation at safety factor q(95) = 1.9 in divertor plasmas for 150 instability growth times. Magnetohydrodynamic stability sets a hard, disruptive limit on the minimum edge safety factor achievable in a tokamak, or on the maximum plasma current at a given(More)
Density pumpout and edge-localized mode (ELM) suppression by applied n=2 magnetic fields in low-collisionality DIII-D plasmas are shown to be correlated with the magnitude of the plasma response driven on the high-field side (HFS) of the magnetic axis but not the low-field side (LFS) midplane. These distinct responses are a direct measurement of a(More)
  • 1