Jill C. Bettinger

Learn More
The C. elegans heterochronic gene pathway consists of a cascade of regulatory genes that are temporally controlled to specify the timing of developmental events. Mutations in heterochronic genes cause temporal transformations in cell fates in which stage-specific events are omitted or reiterated. Here we show that let-7 is a heterochronic switch gene. Loss(More)
Variation in the acute response to ethanol between individuals has a significant impact on determining susceptibility to alcoholism. The degree to which genetics contributes to this variation is of great interest. Here we show that allelic variation that alters the functional level of NPR-1, a neuropeptide Y (NPY) receptor-like protein, can account for(More)
The mechanisms by which ethanol induces changes in behavior are not well understood. Here, we show that Caenorhabditis elegans loss-of-function mutations in the synaptic vesicle-associated RAB-3 protein and its guanosine triphosphate exchange factor AEX-3 confer resistance to the acute locomotor effects of ethanol. Similarly, mice lacking one or both copies(More)
The Caenorhabditis elegans gene lin-29 is required for the terminal differentiation of the lateral hypodermal seam cells during the larval-to-adult molt. We find that lin-29 protein accumulates in the nuclei of these cells, consistent with its predicted role as a zinc finger transcription factor. The earliest detectable LIN-29 accumulation in seam cell(More)
Caenorhabditis elegans vulval development culminates during exit from the L4-to-adult molt with the formation of an opening through the adult hypodermis and cuticle that is used for egg laying and mating. Vulva formation requires the heterochronic gene lin-29, which triggers hypodermal cell terminal differentiation during the final molt. lin-29 mutants are(More)
BACKGROUND Ethanol induces similar behavioral responses in mammals and the fruit fly, Drosophila melanogaster. By coupling assays for ethanol-related behavior to the genetic tools available in flies, a number of genes have been identified that influence physiological responses to ethanol. To enhance the utility of the Drosophila model for investigating(More)
The development of tolerance to a drug at the level of the neuron reflects a homeostatic mechanism by which neurons respond to perturbations of their function by external stimuli. Acute functional tolerance (AFT) to ethanol is a fast compensatory response that develops within a single drug session and normalizes neuronal function despite the continued(More)
Identifying genes that influence behavioral responses to alcohol is critical for understanding the molecular basis of alcoholism and ultimately developing therapeutic interventions for the disease. Using an integrated approach that combined the power of the Drosophila, Caenorhabditis elegans and mouse model systems with bioinformatics analyses, we(More)
The Caenorhabditis elegans gene lin-29 encodes a zinc-finger transcription factor that is required for hypodermal cell terminal differentiation and proper vulva morphogenesis. Here we demonstrate that lin-29 is also required in males for productive mating. We show that lin-29 males can perform the early mating behaviors including response to hermaphrodite(More)
BACKGROUND Ethanol (EtOH) is metabolized by a 2-step process in which alcohol dehydrogenase (ADH) oxidizes EtOH to acetaldehyde, which is further oxidized to acetate by aldehyde dehydrogenase (ALDH). Although variation in EtOH metabolism in humans strongly influences the propensity to chronically abuse alcohol, few data exist on the behavioral effects of(More)