Jill A . Cowing

Learn More
The shortwave-sensitive SWS1 class of vertebrate visual pigments range in lambda(max) from the violet (385-445 nm) to the ultraviolet (UV) (365-355 nm), with UV-sensitivity almost certainly ancestral. In birds, however, the UV-sensitive pigments present in a number of species have evolved secondarily from an avian violet-sensitive (VS) pigment. All avian VS(More)
Variation in the types and spectral characteristics of visual pigments is a common mechanism for the adaptation of the vertebrate visual system to prevailing light conditions. The extent of this diversity in mammals and birds is discussed in detail in this review, alongside an in-depth consideration of the molecular changes involved. In mammals, a nocturnal(More)
The correlation between ontogenetic changes in the spectral absorption characteristics of retinal photoreceptors and expression of visual pigment opsins was investigated in the black bream, Acanthopagrus butcheri. To establish whether the spectral qualities of environmental light affected the complement of visual pigments during ontogeny, comparisons were(More)
New-world primates such as the marmoset (Callithrix jacchus) show polymorphism for the middle- to long-wavelength sensitive cone pigments. Each X-chromosome carries a gene for only one of three possible pigments. All males are thus dichromats, but some females will be trichromats. We have investigated the responses of cells of the parvocellular (PC) and(More)
season Ophrys orchids emit odors that mimic the scent of receptive female Andrena and the floral morphology adds to the deception. Males find these flowers attractive and attempt to mate with them, transferring orchid pollinia in the process (Simpson and Neff 1981). Like all herbivores, bees show a broad range of specialization. But what makes the bee–plant(More)
"Cone dystrophy with supernormal rod electroretinogram (ERG)" is an autosomal recessive disorder that causes lifelong visual loss combined with a supernormal ERG response to a bright flash of light. We have linked the disorder to a 0.98-cM (1.5-Mb) region on chromosome 9p24, flanked by rs1112534 and rs1074449, using homozygosity mapping in one large(More)
The short-wave-sensitive (SWS) visual pigments of vertebrate cone photoreceptors are divided into two classes on the basis of molecular identity, SWS1 and SWS2. Only the SWS1 class are present in mammals. The SWS1 pigments can be further subdivided into violet-sensitive (VS), with lambda(max) (the peak of maximal absorbance) values generally between 400 and(More)
Although trichromacy in Old and New World primates is based on three visual pigments with spectral peaks in the violet (SW, shortwave), green (MW, middlewave) and yellow-green (LW, longwave) regions of the spectrum, the underlying genetic mechanisms differ. The SW pigment is encoded in both cases by an autosomal gene and, in Old World primates, the MW and(More)
The order Rodentia is subdivided into two suborders, the Sciurognathi and the Hystricognathi. Within the Sciurognathi, the shortwavesensitive (SWS1) class of visual pigments is ultraviolet-sensitive (UVS) amongst the largely nocturnal murine species, whereas violet-sensitive (VS) pigments are thought to be present in diurnal ground and tree squirrels [1,2].(More)
The cottoid fishes of Lake Baikal in eastern Siberia provide a unique opportunity to study the evolution of visual pigments in a group of closely related species exposed to different photic environments. Members of this species flock are adapted to different depth habitats down to >1000 m, and both the rod and cone visual pigments display short wave shifts(More)