Learn More
Routing in wireless ad-hoc networks has received significant attention from recent literature due to the fact that the dynamic behavior of these networks poses many technical challenges on the design of an effective routing scheme. Though on-demand routing approaches have been shown to perform well, they generally lack the support for Quality-of-Service(More)
— Topology control with per-node transmission power adjustment in wireless sensor networks has been shown to be effective with respect to prolonging network lifetime via power conservation and increasing network capacity via better spatial bandwidth reuse. In this work, we consider the problem of topology control in a network of heterogeneous wireless(More)
— Since wireless mobile ad hoc networks are arbitrarily and dynamically deployed, the network performance may be affected by many unpredictable factors such as the total number of nodes, physical area of deployment, and transmission range on each node. Previous research results only focus on maximizing power efficiency through dynamically adjusting the(More)
Fe3O4 has long been regarded as a promising anode material for lithium ion battery due to its high theoretical capacity, earth abundance, low cost, and nontoxic properties. However, up to now no effective and scalable method has been realized to overcome the bottleneck of poor cyclability and low rate capability. In this article, we report a bottom-up(More)
A thin polymer shell helps V2O5 a lot. Short V2O5 nanobelts are grown directly on 3D graphite foam as a lithium-ion battery (LIB) cathode material. A further coating of a poly(3,4-ethylenedioxythiophene) (PEDOT) thin shell is the key to the high performance. An excellent high-rate capability and ultrastable cycling up to 1000 cycles are demonstrated.
Honeycomb-like MoS2 nanoarchitectures anchored into 3D graphene foam are successfully fabricated as a high-performance positive electrode for enhanced Li-ion storage. The unique 3D interpenetrating honeycomb-like structure is the key to the high performance. High reversible capacity, superior high-rate capability, and excellent cycling stability are(More)
Sodium-ion batteries are a potentially low-cost and safe alternative to the prevailing lithium-ion battery technology. However, it is a great challenge to achieve fast charging and high power density for most sodium-ion electrodes because of the sluggish sodiation kinetics. Here we demonstrate a high-capacity and high-rate sodium-ion anode based on(More)
Supercapacitor with ultrahigh energy density (e.g., comparable with those of rechargeable batteries) and long cycling ability (>50000 cycles) is attractive for the next-generation energy storage devices. The energy density of carbonaceous material electrodes can be effectively improved by combining with certain metal oxides/hydroxides, but many at the(More)
Nanoscale surface engineering is playing important role in enhancing the performance of battery electrode. VO2 is one of high-capacity but less-stable materials and has been used mostly in the form of powders for Li-ion battery cathode with mediocre performance. In this work, we design a new type of binder-free cathode by bottom-up growth of biface VO2(More)
Platinum is ubiquitous in the production sectors of chemicals and fuels; however, its scarcity in nature and high price will limit future proliferation of platinum-catalysed reactions. One promising approach to conserve platinum involves understanding the smallest number of platinum atoms needed to catalyse a reaction, then designing catalysts with the(More)