Learn More
Nearest neighbor search methods based on hashing have attracted considerable attention for effective and efficient large-scale similarity search in computer vision and information retrieval community. In this paper, we study the problems of learning hash functions in the context of multimodal data for cross-view similarity search. We put forward a novel(More)
Similarity search methods based on hashing for effective and efficient cross-modal retrieval on large-scale multimedia databases with massive text and images have attracted considerable attention. The core problem of cross-modal hashing is how to effectively construct correlation between multi-modal representations which are heterogeneous intrinsically in(More)
By transforming data into binary representation, i.e., Hashing, we can perform high-speed search with low storage cost, and thus, Hashing has collected increasing research interest in the recent years. Recently, how to generate Hashcode for multimodal data (e.g., images with textual tags, documents with photos, and so on) for large-scale cross-modality(More)
Concept Factorization (CF), as a variant of Nonnegative Matrix Factorization (NMF), has been widely used for learning compact representation for images because of its psychological and physiological interpretation of naturally occurring data. And graph regularization has been incorporated into the objective function of CF to exploit the intrinsic(More)
Due to its psychological and physiological interpretation of naturally occurring data, Nonnegative Matrix Factorization (NMF) has attracted considerable attention for learning effective representation for images. And its graph-regularized extensions have shown promising results by exploiting the low dimensional manifold structure of data. Actually, their(More)
  • 1