Learn More
Sixteen years ago, mutations in cardiac troponin (Tn)T and α-tropomyosin were linked to familial hypertrophic cardiomyopathy, thus transforming the disorder from a disease of the β-myosin heavy chain to a disease of the cardiac sarcomere. From the outset, studies suggested that mutations in the regulatory thin filament caused a complex, heterogeneous(More)
Alpha- and beta-myosin heavy chain (MHC), the two MHC isoforms expressed in the mammalian heart, differ quantitatively in their enzymatic activities. The MHC composition of the heart can change dramatically in response to numerous stimuli, leading to the hypothesis that changes in cardiac function can be caused by myosin isoform shifts. However, this(More)
The cardiac thin filament regulates actomyosin interactions through calcium-dependent alterations in the dynamics of cardiac troponin and tropomyosin. Over the past several decades, many details of the structure and function of the cardiac thin filament and its components have been elucidated. We propose a dynamic, complete model of the thin filament that(More)
To date, no compounds or interventions exist that treat or prevent sarcomeric cardiomyopathies. Established therapies currently improve the outcome, but novel therapies may be able to more fundamentally affect the disease process and course. Investigations of the pathomechanisms are generating molecular insights that can be useful for the design of novel(More)
Mutations in multiple cardiac sarcomeric proteins including myosin heavy chain (MyHC) and cardiac troponin T (cTnT) cause a dominant genetic heart disease, familial hypertrophic cardiomyopathy (FHC). Patients with mutations in these two genes have quite distinct clinical characteristics. Those with MyHC mutations demonstrate more significant and uniform(More)
Multiple mutations in cardiac troponin T (cTnT) can cause familial hypertrophic cardiomyopathy (FHC). Patients with cTnT mutations generally exhibit mild or no ventricular hypertrophy, yet demonstrate a high frequency of early sudden death. To understand the functional basis of these phenotypes, we created transgenic mouse lines expressing 30%, 67%, and 92%(More)
Hypertrophic Cardiomyopathy (HCM) is a relatively common primary cardiac disorder defined as the presence of a hypertrophied left ventricle in the absence of any other diagnosed etiology. HCM is the most common cause of sudden cardiac death in young people which often occurs without precedent symptoms. The overall clinical phenotype of patients with HCM is(More)
The thin filament protein cardiac troponin T (cTnT) is an important regulator of myofilament activation. Here we report a significant change in cardiac energetics in transgenic mice bearing the missense mutation R92Q within the tropomyosin-binding domain of cTnT, a mutation associated with a clinically severe form of familial hypertrophic cardiomyopathy.(More)
Naturally occurring mutations in cardiac troponin T (cTnT) result in a clinical subset of familial hypertrophic cardiomyopathy. To determine the mechanistic links between thin-filament mutations and cardiovascular phenotypes, we have generated and characterized several transgenic mouse models carrying cTnT mutations. We address two central questions(More)