Jihye Lee

Learn More
Synaptic vesicle fusion mediates communication between neurons and is triggered by rapid influx of Ca(2+). The Ca(2+)-triggering step for fusion is regulated by the synaptic vesicle transmembrane protein Synaptotagmin 1 (Syt1). Syt1 contains two cytoplasmic C2 domains, termed C2A and C2B, which coordinate Ca(2+) binding. Although C2A and C2B share similar(More)
Synapse formation is tightly associated with neuronal excitability. We found striking synaptic overgrowth caused by Drosophila K(+)-channel mutations of the seizure and slowpoke genes, encoding Erg and Ca(2+)-activated large-conductance (BK) channels, respectively. These mutants display two distinct patterns of "satellite" budding from larval motor terminus(More)
The role of the conserved focal adhesion kinase (FAK) family of protein tyrosine kinases in the development and physiological functions of the CNS has long been an area of interest among neuroscientists. In this report, we observe that Drosophila mutants lacking Fak56 exhibit a decreased lifespan, accompanied by a bang-sensitive phenotype, which is(More)
LJ001 is a lipophilic thiazolidine derivative that inhibits the entry of numerous enveloped viruses at non-cytotoxic concentrations (IC50 ≤ 0.5 µM), and was posited to exploit the physiological difference between static viral membranes and biogenic cellular membranes. We now report on the molecular mechanism that results in LJ001's specific inhibition of(More)
Ca(2+) influx through voltage-activated Ca(2+) channels and its feedback regulation by Ca(2+) -activated K(+) (BK) channels is critical in Ca(2+) -dependent cellular processes, including synaptic transmission, growth and homeostasis. Here we report differential roles of cacophony (CaV 2) and Dmca1D (CaV 1) Ca(2+) channels in synaptic transmission and in(More)
Synaptic communication requires precise alignment of presynaptic active zones with postsynaptic receptors to enable rapid and efficient neurotransmitter release. How transsynaptic signaling between connected partners organizes this synaptic apparatus is poorly understood. To further define the mechanisms that mediate synapse assembly, we carried out a(More)
Synaptotagmin 1 (Syt1) is a synaptic vesicle integral membrane protein that regulates neurotransmitter release by activating fast synchronous fusion and suppressing slower asynchronous release. The cytoplasmic C2 domains of Syt1 interact with SNAREs and plasma membrane phospholipids in a Ca(2+)-dependent manner and can substitute for full-length Syt1 in in(More)
Deleted in breast cancer-1 (DBC1) contributes to the regulation of cell survival and apoptosis. Recent studies demonstrated that DBC is phosphorylated at Thr454 by ATM/ATR kinases in response to DNA damage, which is a critical event for p53 activation and apoptosis. However, how DBC1 phosphorylation is regulated has not been studied. Here we show that(More)
For a nanoplasmonic approach of wearable biochip platform, understanding correlation between near-field enhancement on nanostructures and sensing capability is a crucial step to improve the sensitivity in biosensing. A novel and effective method is demonstrated to increase sensitivity with the enhanced electric fields and to reduce noise with targeted(More)