Jihong Chen

Learn More
OBJECTIVE To investigate the potential role of hydrogen sulphide (H(2)S) and ATP-sensitive potassium (K(ATP)) channels in chronic stress-induced colonic hypermotility. METHODS Male Wistar rats were submitted daily to 1 h of water avoidance stress (WAS) or sham WAS (SWAS) for 10 consecutive days. Organ bath recordings, H(2)S production,(More)
BACKGROUND In eukaryotic cells, the genomic DNA is packed with histones to form the nucleosome and chromatin structure. Reversible acetylation of the histone tails plays an important role in the control of specific gene expression. Mounting evidence has established that histone deacetylase inhibitors selectively induce cellular differentiation, growth(More)
Transcriptional coactivator p300 is required for embryonic development and cell proliferation. Valproic acid, a histone deacetylase inhibitor, is widely used in the therapy of epilepsy and bipolar disorder. However, it has intrinsic teratogenic activity through unidentified mechanisms. We report that valproic acid stimulates proteasome-dependent p300(More)
The effects of acetylation on gene expression are complex, with changes in chromatin accessibility intermingled with direct effects on transcriptional regulators. For the nuclear receptors, both positive and negative effects of acetylation on specific gene transcription have been observed. We report that p300 and steroid receptor coactivator 1 interact(More)
Pluripotent stem cells possess a tremendous potential for the treatment of many diseases because of their capacity to differentiate into a variety of cell lineages. However, they provide little promise for muscle-related diseases, mainly because of the lack of small molecule inducers to efficiently direct myogenic conversion. Retinoic acid, acting through(More)
Skeletal myogenesis is an intricate process coordinated temporally by multiple myogenic regulatory factors (MRF) including Myf5, which is the first MRF expressed and marks the commitment of skeletal muscle lineage. The expression of Myf5 gene during early embryogenesis is controlled by a set of enhancer elements, and requires the histone acetyltransferase(More)
While chromatin modifications can offer a useful readout for enhancer activities, it is less clear whether these modification marks are a cause or consequence of transcription factor occupancy and enhancer activation. We have examined in details the temporal events of acetyltransferase associations and histone acetylations at different regulatory regions of(More)
Pluripotent stem cells are able to differentiate into many types of cell lineages in response to differentiation cues. However, a pure population of lineage-specific cells is desirable for any potential clinical application. Therefore, induction of the pluripotent stem cells with lineage-specific regulatory signals, or small molecule inducers, is a(More)
Cell-based therapies using pluripotent stem cells hold great promise as regenerative approaches to treat many types of diseases. Nevertheless many challenges remain and, perhaps foremost, is the issue of how to direct and enhance the specification and differentiation of a desired cell type for potential therapeutics. We have examined the molecular basis for(More)
Skeletal myogenesis is a highly ordered process which specifically depends on the function of transcriptional coactivator p300. Previous studies have established that Akt/protein kinase B (PKB), a positive regulator of p300 in proliferating cells, is also important for proper skeletal muscle development. Nevertheless, it is not clear as to how the p300 is(More)