Learn More
Transmission eigenvalue problem has important applications in inverse scattering. Since the problem is non-self-adjoint, the computation of transmission eigenvalues needs special treatment. Based on a fourth-order reformulation of the transmission eigenvalue problem, a mixed finite element method is applied. The method has two major advantages: 1) the(More)
The transmission eigenvalue problem plays a critical role in the theory of qualitative methods for inhomogeneous media in inverse scattering theory. Efficient computational tools for transmission eigenvalues are needed to motivate improvements to theory, and, more importantly as part of inverse algorithms for estimating material properties. In this paper,(More)
In this paper we consider the transmission eigenvalue problem corresponding to acoustic scattering by a bounded isotropic inhomogeneous object in two dimensions. This is a non self-adjoint eigenvalue problem for a quadratic pencil of operators. In particular we are concerned with theoretical error analysis of a finite element method for computing the(More)