Learn More
Multiwalled carbon nanotube-supported Pt (Pt/MWNT) nanocomposites were prepared by both the aqueous solution reduction of a Pt salt (HCHO reduction) and the reduction of a Pt ion salt in ethylene glycol solution. For comparison, a Pt/XC-72 nanocomposite was also prepared by the EG method. The Pt/MWNT catalyst prepared by the EG method has a high and(More)
MXenes, a new family of 2D materials, combine hydrophilic surfaces with metallic conductivity. Delamination of MXene produces single-layer nanosheets with thickness of about a nanometer and lateral size of the order of micrometers. The high aspect ratio of delaminated MXene renders it promising nanofiller in multifunctional polymer nanocomposites. Herein,(More)
Adsorption of nickel, copper, zinc and cadmium from aqueous solutions on carbon nanotubes oxidized with concentrated nitric acid was carried out in single, binary, ternary and quaternary systems. TEM and adsorption of nitrogen were used to determine texture and structural parameters, respectively. The surface chemistry was evaluated using the pH at the(More)
Chemically converted graphene aerogels with ultralight density and high compressibility are prepared by diamine-mediated functionalization and assembly, followed by microwave irradiation. The resulting graphene aerogels with density as low as 3 mg cm(-3) show excellent resilience and can completely recover after more than 90% compression. The ultralight(More)
Dually fixed SnO2 nanoparticles (DF-SnO2 NPs) on graphene nanosheets by a polyaniline (Pani) coating was successfully fabricated via two facile wet chemistry processes, including anchoring SnO2 NPs onto graphene nanosheets via reducing graphene oxide by Sn(2+) ion, followed by in situ surface sealing with the Pani coating. Such a configuration is very(More)
Carbon nanotubes fabricated by the dc arc discharge method (ADCNTs) and chemical vapor deposition method (CVDCNTs) were oxidized with concentrated HNO 3 to modify their surface chemistry. The materials were characterized using SEM, TEM, FTIR, XPS, potentiometric titration, and nitrogen adsorption. The initial and oxidized materials were used as adsorbents(More)
Lithium-sulphur batteries are one very appealing power source with high energy density. But their practical use is still hindered by several issues including short lifespan, low efficiency and safety concern from the lithium anode. Polysulphide dissolution and insulating nature of sulphur are generally considered responsible for the capacity degradation.(More)
Photodechlorination is a key process affecting the fate and effect of polychlorinated biphenyls (PCBs) in the environment. However, there are still numerous gaps in our knowledge, which become apparent in photodechlorination mechanism of PCBs. We investigated the conformations of 35 PCB congeners in the ground state and the first triplet excited state (T1),(More)
This study presents new insight into the photochemical degradation of polybrominated diphenyl ethers (PBDEs), and it provides details about the structures and properties of 27 PBDE congeners in the electronically excited state using the time-dependent density functional theory method. Each PBDE congener exhibited remarkably different geometries in the(More)
Polychlorinated diphenyl ethers (PCDEs) are a focus of current environmental concern as a group of ubiquitous potential persistent organic pollutants. There are still significant gaps in our knowledge concerning the photolysis mechanisms of PCDEs. In this study, the direct photolysis mechanisms of PCDEs were investigated by density functional theory. The(More)