Learn More
Steam explosion is an important process for the fractionation of biomass components. In order to understand the behaviour of lignin under the conditions encountered in the steam explosion process, as well as in other types of steam treatment, aspen wood and isolated lignin from aspen were subjected to steam treatment under various conditions. The lignin(More)
Lignosulfonates are by-products from the sulfite pulping process. During this process, lignin is liberated from pulp fibers through sulfonation and washed away. As a consequence, the lignosulfonate molecules contain both hydrophobic and hydrophilic moieties. Lignosulfonates are low-value products with limited performance and are used as such as binders,(More)
Aspen wood was treated with steam at different time-temperature severity factors. Analysis of the amounts of acids released revealed a relationship between the acidity and the formation of furfural and hydroxymethyl furfural as degradation products from carbohydrates. It is suggested that two concurrent or consecutive mechanisms are responsible for the(More)
The chemical structure of milled-wood lignins from Eucalyptus globulus, E. nitens, E. maidenii, E. grandis, and E. dunnii was investigated. The lignins were characterized by analytical pyrolysis, thioacidolysis, and 2D-NMR that confirmed the predominance of syringyl over guaiacyl units and only showed traces of p-hydroxyphenyl units. E. globulus lignin had(More)
The ability of laccases from Trametes villosa (TvL), Myceliophthora thermophila (MtL), Trametes hirsuta (ThL) and Bacillus subtilis (BsL) to improve the dispersion properties of calcium lignosulfonates 398 in the presence of HBT as a mediator was investigated. Size exclusion chromatography showed an extensive increase in molecular weight of the samples(More)
It is of both theoretical and practical importance to develop a universally applicable approach for the fractionation and sensitive lignin characterization of lignin-carbohydrate complexes (LCCs) from all types of lignocellulosic biomass, both natively and after various types of processing. In the present study, a previously reported fractionation approach(More)
Milled wood lignin (MWL) and acetic and formic acid lignin (AL and FL) from Miscanthus x giganteus bark were produced, respectively, before and after organosolv fractionations under optimal conditions, in terms of organic and hydrochloric acid concentrations, liquid/wood ratio, and reaction time. In order to study the M. x giganteus native lignin structure(More)
Xylan–lignin (XL), glucomannan–lignin (GML) and glucan–lignin (GL) complexes were isolated from spruce wood, hydrolyzed with xylanase or endoglucanase/β-glucosidase, and analyzed by analytical pyrolysis and 2D-NMR. The enzymatic hydrolysis removed most of the polysaccharide moieties in the complexes, and the lignin content and relative abundance of(More)
OBJECTIVES MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression and mediate diverse physiological processes. In this study, we investigated functions of miRNA miR-34c-3p in non-small cell lung cancer (NSCLC). MATERIALS AND METHODS miR-34c-3p expression was evaluated by qPCR. Cell viability was examined by MTT(More)
Cellulose nanocrystals (CNs) were prepared from tunicate by enzymatic hydrolysis (ECN), TEMPO-mediated oxidation (TCN) and acid hydrolysis (ACN). They were cast alone or blended with glucomannan (GM) from konjac or spruce to prepare films. Different CNs were obtained with a yield of ECN>TCN>ACN with corresponding order of decreased Mw but increased(More)