Learn More
Resistive memory (ReRAM) based on a solid-electrolyte insulator is a promising nanoscale device and has great potentials in nonvolatile memory, analog circuits, and neuromorphic applications. The underlying resistive switching (RS) mechanism of ReRAM is suggested to be the formation and rupture of nanoscale conductive filament (CF) inside the(More)
CMOS compatible 200 mm two-layer-routing technology is employed to fabricate graphene field-effect transistors (GFETs) and monolithic graphene ICs. The process is inverse to traditional Si technology. Passive elements are fabricated in the first metal layer and GFETs are formed with buried gate/source/drain in the second metal layer. Gate dielectric of 3.1(More)
A monolithic double-balanced graphene mixer integrated circuit (IC) has been successfully designed and fabricated. The IC adopted the cross-coupled resistive mixer topology, integrating four 500 nm-gate-length graphene field-effect transistors (GFETs), four on-chip inductors, and four on-chip capacitors. Passive-first-active-last fabrication flow was(More)
Recently, broken symmetry effect induced edge states in two-dimensional electronic systems have attracted great attention. However, whether edge states may exist in strongly correlated oxides is not yet known. In this work, using perovskite manganites as prototype systems, we demonstrate that edge states do exist in strongly correlated oxides. Distinct(More)
Conductive-bridge random access memory (CBRAM) is considered a strong contender of the next-generation nonvolatile memory technology. Resistive switching (RS) behavior in CBRAM is decided by the formation/dissolution of nanoscale conductive filament (CF) inside RS layer based on the cation injection from active electrode and their electrochemical reactions.(More)
For strongly correlated oxides, it has been a long-standing issue regarding the role of the chemical ordering of the dopants on the physical properties. Here, using unit cell by unit cell superlattice growth technique, we determine the role of chemical ordering of the Pr dopant in a colossal magnetoresistant (La(1-y)Pr(y))(1-x)Ca(x)MnO3 (LPCMO) system,(More)
Resistive switching memory with low switching current is critical for low-power application. In this letter, we successfully demonstrated a four-terminal resistive RAM device with ultra-low switching current. The device is SET by one pair of electrodes and RESET by the other. The rupture process of conductive filament can be resulted from electrochemical(More)
A new GaAs/InGaAs/InGaP compound semiconductor nanotube material structure was designed and fabricated in this work. A thin, InGaAs-strained material layer was designed in the nanotube structure, which can directionally roll up a strained heterostructure through a normal wet etching process. The compound semiconductor nanotube structure was grown by(More)
We propose two-dimensional gratings comprised of a large number of identical and similarly oriented hexagonal holes for the high order diffraction suppression. An analytical study of the diffraction property for such gratings, based on both square and triangle arrays, is described. The dependence of the high order diffraction property on the hole shape and(More)
In order to conquer the short-channel effects that limit conventional ultra-scale semiconductor devices, two-dimensional materials, as an option of ultimate thin channels, receive wide attention. Graphene, in particular, bears great expectations because of its supreme carrier mobility and saturation velocity. However, its main disadvantage, the lack of(More)