Learn More
In recent years, convolutional neural network (CNN) based methods have achieved great success in a large number of applications and have been among the most powerful and widely used techniques in computer vision. However, CNN-based methods are com-putational-intensive and resource-consuming, and thus are hard to be integrated into embedded systems such as(More)
Sequence census methods like ChIP-seq now produce an unprecedented amount of genome-anchored data. We have developed an integrative method to identify patterns from multiple experiments simultaneously while taking full advantage of high-resolution data, discovering joint patterns across different assay types. We apply this method to ENCODE chromatin data(More)
Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion(More)
Animal germ cells produce PIWI-interacting RNAs (piRNAs), small silencing RNAs that suppress transposons and enable gamete maturation. Mammalian transposon-silencing piRNAs accumulate early in spermatogenesis, whereas pachytene piRNAs are produced later during postnatal spermatogenesis and account for >95% of all piRNAs in the adult mouse testis. Mutants(More)
piRNAs guide PIWI proteins to silence transposons in animal germ cells. Reciprocal cycles of piRNA-directed RNA cleavage--catalyzed by the PIWI proteins Aubergine (Aub) and Argonaute3 (Ago3) in Drosophila melanogaster--expand the population of antisense piRNAs in response to transposon expression, a process called the Ping-Pong cycle. Heterotypic Ping-Pong(More)
BACKGROUND Recent advance in genetic studies added the confirmed susceptible loci for type 2 diabetes to eighteen. In this study, we attempt to analyze the independent and joint effect of variants from these loci on type 2 diabetes and clinical phenotypes related to glucose metabolism. METHODS/PRINCIPAL FINDINGS Twenty-one single nucleotide polymorphisms(More)
Lasso is a widely used regression technique to find sparse representations. When the dimension of the feature space and the number of samples are extremely large, solving the Lasso problem remains challenging. To improve the efficiency of solving large-scale Lasso problems, El Ghaoui and his colleagues have proposed the SAFE rules which are able to quickly(More)
VCells, the proposed Edge-Weighted Centroidal Voronoi Tessellations (EWCVTs)-based algorithm, is used to generate superpixels, i.e., an oversegmentation of an image. For a wide range of images, the new algorithm is capable of generating roughly uniform subregions and nicely preserving local image boundaries. The undersegmentation error is effectively(More)
Genome-wide occupancy profiles of five components of the RNA polymerase III (Pol III) machinery in human cells identified the expected tRNA and noncoding RNA targets and revealed many additional Pol III–associated loci, mostly near short interspersed elements (SINEs). Several genes are targets of an alternative transcription factor IIIB (TFIIIB) containing(More)
Land plants have evolved increasingly complex regulatory modes of their flowering time (or heading date in crops). Rice (Oryza sativa L.) is a short-day plant that flowers more rapidly in short-day but delays under long-day conditions. Previous studies have shown that the CO-FT module initially identified in long-day plants (Arabidopsis) is evolutionary(More)