Learn More
—Ontology alignment identifies semantically matching entities in different ontologies. Various ontology alignment strategies have been proposed; however, few systems have explored how to automatically combine multiple strategies to improve the matching effectiveness. This paper presents a dynamic multistrategy ontology alignment framework, named RiMOM. The(More)
This paper addresses several key issues in the ArnetMiner system, which aims at extracting and mining academic social networks. Specifically, the system focuses on: 1) Extracting researcher profiles automatically from the Web; 2) Integrating the publication data into the network from existing digital libraries; 3) Modeling the entire academic network; and(More)
We study the extent to which the formation of a two-way relationship can be predicted in a dynamic social network. A two-way (called reciprocal) relationship, usually developed from a one-way (parasocial) relationship, represents a more trustful relationship between people. Understanding the formation of two-way relationships can provide us insights into(More)
We study an interesting phenomenon of social influence locality in a large microblogging network, which suggests that users' behaviors are mainly influenced by close friends in their ego networks. We provide a formal definition for the notion of social influence locality and develop two instan-tiation functions based on pairwise influence and structural(More)
We show that information about social relationships can be used to improve user-level sentiment analysis. The main motivation behind our approach is that users that are somehow "connected" may be more likely to hold similar opinions; therefore, relationship information can complement what we can extract about a user's viewpoints from their utterances.(More)
Retweeting is an important action (behavior) on Twitter, indicating the behavior that users re-post microblogs of their friends. While much work has been conducted for mining textual content that users generate or analyzing the social network structure, few publications systematically study the underlying mechanism of the retweeting behaviors. In this(More)
In large social networks, nodes (users, entities) are influenced by others for various reasons. For example, the colleagues have strong influence on one's work, while the friends have strong influence on one's daily life. How to differentiate the social influences from different angles(topics)? How to quantify the strength of those social influences? How to(More)
In this paper, we propose a unified topic modeling approach and its integration into the random walk framework for academic search. Specifically, we present a topic model for simultaneously modeling papers, authors, and publication venues. We combine the proposed topic model into the random walk framework. Experimental results show that our proposed(More)
Influence is a complex and subtle force that governs the dynamics of social networks as well as the behaviors of involved users. Understanding influence can benefit various applications such as viral marketing, recommendation, and information retrieval. However, most existing works on social influence analysis have focused on verifying the existence of(More)