Learn More
—Ontology alignment identifies semantically matching entities in different ontologies. Various ontology alignment strategies have been proposed; however, few systems have explored how to automatically combine multiple strategies to improve the matching effectiveness. This paper presents a dynamic multistrategy ontology alignment framework, named RiMOM. The(More)
This paper addresses several key issues in the ArnetMiner system, which aims at extracting and mining academic social networks. Specifically, the system focuses on: 1) Extracting researcher profiles automatically from the Web; 2) Integrating the publication data into the network from existing digital libraries; 3) Modeling the entire academic network; and(More)
This paper addresses the issue of expert finding in a social network. The task of expert finding, as one of the most important research issues in social networks, is aimed at identifying persons with relevant expertise or experience for a given topic. In this paper, we propose a propagation-based approach that takes into consideration of both person local(More)
Retweeting is an important action (behavior) on Twitter, indicating the behavior that users re-post microblogs of their friends. While much work has been conducted for mining textual content that users generate or analyzing the social network structure, few publications systematically study the underlying mechanism of the retweeting behaviors. In this(More)
We study the extent to which the formation of a two-way relationship can be predicted in a dynamic social network. A two-way (called reciprocal) relationship, usually developed from a one-way (parasocial) relationship, represents a more trustful relationship between people. Understanding the formation of two-way relationships can provide us insights into(More)
We study an interesting phenomenon of social influence locality in a large microblogging network, which suggests that users' behaviors are mainly influenced by close friends in their ego networks. We provide a formal definition for the notion of social influence locality and develop two instan-tiation functions based on pairwise influence and structural(More)
In large social networks, nodes (users, entities) are influenced by others for various reasons. For example, the colleagues have strong influence on one's work, while the friends have strong influence on one's daily life. How to differentiate the social influences from different angles(topics)? How to quantify the strength of those social influences? How to(More)
We show that information about social relationships can be used to improve user-level sentiment analysis. The main motivation behind our approach is that users that are somehow "connected" may be more likely to hold similar opinions; therefore, relationship information can complement what we can extract about a user's viewpoints from their utterances.(More)
In online social networks, most relationships are lack of meaning labels (e.g., " colleague " and " intimate friends "), simply because users do not take the time to label them. An interesting question is: can we automatically infer the type of social relationships in a large network? what are the fundamental factors that imply the type of social(More)