Learn More
Loss-of-function mutations in PINK1 and Parkin cause parkinsonism in humans and mitochondrial dysfunction in model organisms. Parkin is selectively recruited from the cytosol to damaged mitochondria to trigger their autophagy. How Parkin recognizes damaged mitochondria, however, is unknown. Here, we show that expression of PINK1 on individual mitochondria(More)
The deposition of the abundant presynaptic brain protein alpha-synuclein as fibrillary aggregates in neurons or glial cells is a hallmark lesion in a subset of neurodegenerative disorders. These disorders include Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy, collectively referred to as synucleinopathies. Importantly,(More)
Mutations in presenilins are the major cause of familial Alzheimer's disease, but the pathogenic mechanism by which presenilin mutations cause memory loss and neurodegeneration remains unclear. Here we demonstrate that conditional double knockout mice lacking both presenilins in the postnatal forebrain exhibit impairments in hippocampal memory and synaptic(More)
Loss-of-function mutations in parkin are the major cause of early-onset familial Parkinson's disease. To investigate the pathogenic mechanism by which loss of parkin function causes Parkinson's disease, we generated a mouse model bearing a germline disruption in parkin. Parkin-/- mice are viable and exhibit grossly normal brain morphology. Quantitative in(More)
Parkinson's disease (PD) is a common neurodegenerative disorder thought to be associated with mitochondrial dysfunction. Loss of function mutations in the putative mitochondrial protein PINK1 (PTEN-induced kinase 1) have been linked to familial forms of PD, but the relation of PINK1 to mammalian mitochondrial function remains unclear. Here, we report that(More)
Presenilin-1 (PS1) is the major gene responsible for early-onset familial Alzheimer's disease (FAD). To understand the normal function of PS1, we have generated a targeted null mutation in the murine homolog of PS1. We report that PS1-/- mice die shortly after natural birth or Caesarean section. The skeleton of homozygous mutants is grossly deformed.(More)
Loss-of-function mutations in parkin are the predominant cause of familial Parkinson's disease. We previously reported that parkin-/- mice exhibit nigrostriatal deficits in the absence of nigral degeneration. Parkin has been shown to function as an E3 ubiquitin ligase. Loss of parkin function, therefore, has been hypothesized to cause nigral degeneration(More)
  • Jie Shen
  • SIAM J. Scientific Computing
  • 1994
We present some efficient algorithms based on the Legendre-Galerkin approximations for the direct solution of the second and fourth order elliptic equations. The key to the efficiency of our algorithms is to construct appropriate base functions, which lead to systems with sparse matrices for the discrete variational formulations. The complexities of the(More)
Dominantly inherited mutations in the genes encoding presenilins (PS) and the amyloid precursor protein (APP) are the major causes of familial Alzheimer's disease (AD). The prevailing view of AD pathogenesis posits that accumulation of beta-amyloid (Abeta) peptides, particularly Abeta42, is the central event triggering neurodegeneration. Emerging evidence,(More)