Learn More
The sparse representation of a multiple-measurement vector (MMV) is a relatively new problem in sparse representation. Efficient methods have been proposed. Although many theoretical results that are available in a simple case-single-measurement vector (SMV)-the theoretical analysis regarding MMV is lacking. In this paper, some known results of SMV are(More)
Unified, structured vocabularies and classifications freely provided by the Gene Ontology (GO) Consortium are widely accepted in most of the large scale gene annotation projects. Consequently, many tools have been created for use with the GO ontologies. WEGO (Web Gene Ontology Annotation Plot) is a simple but useful tool for visualizing, comparing and(More)
PubChem (https://pubchem.ncbi.nlm.nih.gov) is a public repository for information on chemical substances and their biological activities, launched in 2004 as a component of the Molecular Libraries Roadmap Initiatives of the US National Institutes of Health (NIH). For the past 11 years, PubChem has grown to a sizable system, serving as a chemical information(More)
The problem of modeling and predicting spa-tiotemporal traffic phenomena over an urban road network is important to many traffic applications such as detecting and forecasting congestion hotspots. This paper presents a decentralized data fusion and active sensing (D 2 FAS) algorithm for mobile sensors to actively explore the road network to gather and(More)
Marriage in Honey Bees Optimization (MBO) is swarm-intelligence methods. In this paper, the author proposed a new swarm-intelligence method, named as Wolf Pack Search (WPS), which is abstracted from the behavior feature of the wolf pack. Utilizing the WPS algorithm into the local search process of Marriage in Honey Bees Optimization algorithm, the paper(More)
Three-dimensional (3D) structure is now known for a large fraction of all protein families. Thus, it has become rather likely that one will find a homolog with known 3D structure when searching a sequence database with an arbitrary query sequence. Depending on the extent of similarity, such neighbor relationships may allow one to infer biological function(More)
Adaptive networks are suitable for decentralized inference tasks. Recent works have intensively studied distributed optimization problems in the case where the nodes have to estimate a single optimum parameter vector collaboratively. However, there are many important applications that are multitask-oriented in the sense that there are multiple optimum(More)
Adaptive filtering algorithms operating in reproducing kernel Hilbert spaces have demonstrated superiority over their linear counterpart for nonlinear system identification. Unfortunately, an undesirable characteristic of these methods is that the order of the filters grows linearly with the number of input data. This dramatically increases the(More)
Mobility-on-demand (MoD) systems have recently emerged as a promising paradigm of one-way vehicle sharing for sustainable personal urban mobility in densely populated cities. We assume the capability of a MoD system to be enhanced by deploying robotic shared vehicles that can autonomously cruise the streets to be hailed by users. A key challenge of the MoD(More)
This paper develops a novel linear-time algorithm, termed SPARse Truncated Amplitude flow (SPARTA), to reconstruct a sparse signal from a small number of magnitude-only measurements. It deals with what is also known as sparse phase retrieval (PR), which is NP-hard in general and emerges in many science and engineering applications. Upon formulating sparse(More)