Learn More
High grade glioma cells derived from patient biopsies express an amiloride-sensitive sodium conductance that has properties attributed to the human brain sodium channel family, also known as acid-sensing ion channels (ASICs). This amiloride-sensitive conductance was not detected in cells obtained from normal brain tissue or low grade or benign tumors.(More)
The long non-coding RNA MEG3 has been reported to be a tumor suppressor in a number of malignant tumors including gastric cancer. Several studies have shown that the regulation of MEG3 may attribute to the promoter hypermethylation. However, the mechanism of MEG3 regulation in gastric cancer is still not well understood. MiR-148a can suppress gastric(More)
Studies have shown that microRNA-148a (miR-148a) was proved to be silenced while DNA methyltransferase 1 (DNMT1) was over-expressed in gastric cancer. But the mechanism of aberrant expression of miR-148a and DNMT1 and their relationships in gastric cancer are still unknown. The aims of this study were to investigate the expression profile of miR-148a and(More)
PTENP1 has been demonstrated to function as a tumor suppressor in several cancer cells. However, its expression and biological roles in gastric cancer (GC) have not yet been investigated. In this study, we demonstrated that PTENP1 was frequently decreased in GC tissues and cell lines, which might be partly associated with DNA hypermethylation, and lower(More)
We explored the involvement of protein kinase C (PKC) and its isoforms in the regulation of BNaC2. Reverse transcriptase PCR evaluation of PKC isoform expression at the level of mRNA revealed the presence of alpha and epsilon/epsilon' in all glioma cell lines analyzed; most, but not all cell lines expressed delta and zeta. No messages were found for the(More)
Tristetraprolin (TTP) is an adenine/uridine (AU)-rich element (ARE)-binding protein that can induce degradation of mRNAs. In this study, we report that TTP suppresses the expression of interleukin-33 (IL-33), a tumor-promoting inflammatory cytokine, and thereby inhibits the progression of gastric cancer (GC). Overexpression of TTP decreased the level of(More)
INTRODUCTION As it is not clear whether growth arrest-specific 5 (GAS5) inhibits gastric cancer (GC) cell proliferation by regulating cell cycle, we analyzed the effect of GAS5 on cell cycle regulation of GC cells and explored the underlying mechanism. METHODS We measured GAS5 levels in GC tissues and corresponding normal tissues, and analyzed the role of(More)
Underexpression of the gene runt-related transcription factor 3 (RUNX3), an important tumor suppressor, is known to contribute to gastric cancer progression. However, the mechanism underlying aberrant RUNX3 expression has not been fully elucidated. We investigated the role of microRNA-148a (miR-148a) and DNA methyltransferases (DNMTs) in RUNX3 promoter(More)
Long non-coding RNAs (lncRNAs) have been widely studied in recent years, and accumulating evidence identified lncRNAs as crucial regulators of various biological processes, including cell cycle progression, chromatin remodeling, gene transcription, and posttranscriptional processing. In addition, the fact that lncRNAs interact with the MYC gene family in(More)
Gastric cancer (GC) is the fourth most commonly diagnosed type of cancer worldwide and has the second highest mortality rate of all cancer types. Classical genetics alone does not fully explain how GC occurs; however, epigenetics provides a partial explanation with regard to the cause of cancer. DNA methylation, the best‑known type of epigenetic marker,(More)