Learn More
Deep neural networks (DNN) have shown unprecedented success in various computer vision applications such as image classification and object detection. However, it is still a common annoyance during the training phase, that one has to prepare at least thousands of labeled images to fine-tune a network to a specific domain. Recent study (Tommasi et al., 2015)(More)
Human action recognition is an important task in computer vision. Extracting discriminative spatial and temporal features to model the spatial and temporal evolutions of different actions plays a key role in accomplishing this task. In this work, we propose an end-to-end spatial and temporal attention model for human action recognition from skeleton data.(More)
Image prior models based on sparse and redundant representations are attracting more and more attention in the field of image restoration. The conventional sparsity-based methods enforce sparsity prior on small image patches independently. Unfortunately, these works neglected the contextual information between sparse representations of neighboring image(More)
Human action recognition from well-segmented 3D skeleton data has been intensively studied and attracting an increasing attention. Online action detection goes one step further and is more challenging, which identifies the action type and localizes the action positions on the fly from the untrimmed stream. In this paper, we study the problem of online(More)
Despite the fact that many 3D human activity benchmarks being proposed, most existing action datasets focus on the action recognition tasks for the segmented videos. There is a lack of standard large-scale benchmarks, especially for current popular data-hungry deep learning based methods. In this paper, we introduce a new large scale benchmark (PKU-MMD) for(More)
Summary form only given. Block-based Discrete Cosine Transform (BDCT) has been widely used in image and video compression due to its energy compacting property and relative ease of implementation. However, BDCT has a major drawback, which is usually referred to as blocking artifacts. Blocking artifacts appear as grid noise along the block boundaries because(More)
In this paper, we propose a novel multi-pose face hallucination method based on Neighbor Embedding for Facial Components (NEFC) to magnify face images with various poses and expressions. To represent the structure of a face, a facial component decomposition is employed on each face image. Then, a neighbor embedding reconstruction method with(More)