Jiayan Lang

Learn More
T. Ji, Dr. Y. Ding, Dr. Y. Zhao, J. Wang, H. Qin, J. Lang, R. Zhao, Y. Zhang, J. Shi, Prof. G. Nie CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) 11 Beiyitiao, Zhongguancun Beijing 100190 , China E-mail: zhaoying@nanoctr.cn; niegj@nanoctr.cn X. Liu, Dr. N. Tao, Prof. Z. Qin(More)
A novel cleavable amphiphilic peptide (CAP) was designed to be specifically responsive to fibroblast activation protein-α (FAP-α), a protease specifically expressed on the surface of cancer-associated fibroblasts. The CAP self-assembled into fiber-like nanostructures in solution, while the presence of hydrophobic chemotherapeutic drugs readily transformed(More)
Extensive evidence has shown that platelets support tumor metastatic progression by inducing epithelial-mesenchymal transition of cancer cells and by shielding circulating tumor cells from immune-mediated elimination. Therefore, blocking platelet function represents a potential new avenue for therapy focused on eliminating metastasis. Here we show that(More)
Fibrotic stroma, a critical character of pancreatic tumor microenvironment, provides a critical barrier against the penetration and efficacy of various antitumor drugs. Therefore, new strategies are urgently needed to alleviate the fibrotic mass and increase the drug perfusion within pancreatic cancer tissue. In our current work, we developed a(More)
Peptide therapeutics hold great promise for the treatment of cancer due to low toxicity, high specificity, and ease of synthesis and modification. However, the unfavorable pharmacokinetic parameters strictly limit their therapeutic efficacy and clinical translation. Here, we tailor-designed an amphiphilic chimeric peptide through conjugation of functional(More)
Peptide therapeutics hold great promise for the treatment of cancer due to low toxicity, high specificity, and ease of synthesis and modification. However, the unfavorable pharmacokinetic parameters strictly limit their therapeutic efficacy and clinical translation. Here, we tailor-designed an amphiphilic chimeric peptide through conjugation of functional(More)
During pancreatic tumor development, pancreatic stellate cells (PSCs) proliferate exuberantly to secrete extracellular matrix (ECM) in the tumor stroma, which presents major barriers for drug delivery and penetration in tumor tissue. Thus, down-regulating ECM levels via regulation of the PSCs may allow enhanced penetration of therapeutic drugs and thereby(More)
  • 1