Learn More
We present a new algorithm for removing motion blur from a single image. Our method computes a deblurred image using a unified probabilistic model of <i>both</i> blur kernel estimation and unblurred image restoration. We present an analysis of the causes of common artifacts found in current deblurring methods, and then introduce several novel terms within(More)
When dealing with objects with complex structures, saliency detection confronts a critical problem - namely that detection accuracy could be adversely affected if salient foreground or background in an image contains small-scale high-contrast patterns. This issue is common in natural images and forms a fundamental challenge for prior methods. We tackle it(More)
We discuss a few new motion deblurring problems that are significant to kernel estimation and non-blind deconvolution. We found that strong edges do not always profit kernel estimation, but instead under certain circumstance degrade it. This finding leads to a new metric to measure the usefulness of image edges in motion deblurring and a gradient selection(More)
We show in this paper that the success of previous maximum a posterior (MAP) based blur removal methods partly stems from their respective intermediate steps, which implicitly or explicitly create an unnatural representation containing salient image structures. We propose a generalized and mathematically sound L<sub>0</sub> sparse expression, together with(More)
We present a new image editing method, particularly effective for sharpening major edges by increasing the steepness of transition while eliminating a manageable degree of low-amplitude structures. The seemingly contradictive effect is achieved in an optimization framework making use of L0 gradient minimization, which can globally control how many non-zero(More)
A common problem of optical flow estimation in the multiscale variational framework is that fine motion structures cannot always be correctly estimated, especially for regions with significant and abrupt displacement variation. A novel extended coarse-to-fine (EC2F) refinement framework is introduced in this paper to address this issue, which reduces the(More)
We propose a simple but effective upsampling method for automatically enhancing the image/video resolution, while preserving the essential structural information. The main advantage of our method lies in a feedback-control framework which faithfully recovers the high-resolution image information from the input data, <i>without</i> imposing additional local(More)
It is ubiquitous that meaningful structures are formed by or appear over textured surfaces. Extracting them under the complication of texture patterns, which could be regular, near-regular, or irregular, is very challenging, but of great practical importance. We propose new inherent variation and relative total variation measures, which capture the(More)
In this paper, we introduce a novel approach to image completion, which we call structure propagation. In our system, the user manually specifies important missing structure information by extending a few curves or line segments from the known to the unknown regions. Our approach synthesizes image patches along these user-specified curves in the unknown(More)
Speedy abnormal event detection meets the growing demand to process an enormous number of surveillance videos. Based on inherent redundancy of video structures, we propose an efficient sparse combination learning framework. It achieves decent performance in the detection phase without compromising result quality. The short running time is guaranteed because(More)