Learn More
This paper considers lattice decoding for multi-input multi-output (MIMO) detection under PAM constellations. A key aspect of lattice decoding is that it relaxes the symbol bound constraints in the optimal maximum-likelihood (ML) detector for faster implementations. It is known that such a symbol bound relaxation may lead to a damaging effect on the system(More)
This paper describes a new approximate maximum-likelihood (ML) MIMO detection approach by studying a Lagrangian dual relaxation (LDR) of ML. Unlike many existing relaxed ML methods, the proposed LDR employs a discrete domain for the problem formulation. We find that the proposed LDR exhibits an intriguing relationship to the lattice decoders (LDs) and the(More)
In this paper, we study the amplify-and-forward (AF) schemes in two-hop one-way relay networks. In particular, we consider the multigroup multicast transmission between long-distance users. Given that perfect channel state information is perceived, our goal is to design the AF process so that the max-min-fair (MMF) signal-to-interference-plus-noise ratio(More)
This paper considers robust constant envelope (CE) precoding with antenna-subset selection (AS) in a large-scale MISO downlink scenario where only imperfect channel state information at the transmitter (CSIT) is available. CE precoding is a recently proposed transmission scheme that enables the use of cheap but highly power-efficient power amplifiers, while(More)
— This is a companion technical report of the main manuscript " Semidefinite Relaxation and Approximation Analysis of a Beamformed Alamouti Scheme for Relay Beamforming Networks ". The report serves to give detailed derivations of Lemma 1-2 in the main manuscript, which are too long to be included in the latter. In addition, more simulation results are(More)
This paper concentrates on a robust transmit optimization problem for the multiuser multi-input single-output (MISO) downlink scenario and under inaccurate channel state information (CSI). This robust problem deals with a general-rank transmit covariance design and follows a safe rate-constrained formulation under spherically bounded CSI uncertainties.(More)
  • 1