Learn More
We present a new data structure---the <i>bilateral grid</i>, that enables fast edge-aware image processing. By working in the bilateral grid, algorithms such as bilateral filtering, edge-aware painting, and local histogram equalization become simple manipulations that are both local and independent. We parallelize our algorithms on modern GPUs to achieve(More)
Digits is a wrist-worn sensor that recovers the full 3D pose of the user's hand. This enables a variety of freehand interactions on the move. The system targets mobile settings, and is specifically designed to be low-power and easily reproducible using only off-the-shelf hardware. The electronics are self-contained on the user's wrist, but optically image(More)
We address the fundamental challenge of <i>scalability</i> for real-time volumetric surface reconstruction methods. We design a memory efficient, hierarchical data structure for commodity graphics hardware, which supports live reconstruction of large-scale scenes with fine geometric details. Our sparse data structure fuses overlapping depth maps from a(More)
Traditionally, effects that require evaluating multidimensional integrals for each pixel, such as motion blur, depth of field, and soft shadows, suffer from noise due to the variance of the high-dimensional integrand. In this paper, we describe a general reconstruction technique that exploits the anisotropy in the temporal light field and permits efficient(More)
We propose a generalized approach to decoupling shading from visibility sampling in graphics pipelines, which we call <i>decoupled sampling</i>. Decoupled sampling enables stochastic supersampling of motion and defocus blur at reduced shading cost, as well as controllable or adaptive shading rates which trade off shading quality for performance. It can be(More)
Kin&#202;tre allows novice users to scan arbitrary physical objects and bring them to life in seconds. The fully interactive system allows diverse static meshes to be animated using the entire human body. Traditionally, the process of mesh animation is laborious and requires domain expertise, with rigging specified manually by an artist when designing the(More)
Light scattering in a participating medium is responsible for several important effects we see in the natural world. In the presence of occluders, computing single scattering requires integrating the illumination scattered towards the eye along the camera ray, modulated by the visibility towards the light at each point. Unfortunately, incorporating(More)
Volumetric effects such as beams of light through participating media are an important component in the appearance of the natural world. Many such effects can be faithfully modeled by a single scattering medium. In the presence of shadows, rendering these effects can be prohibitively expensive: current algorithms are based on ray marching, i.e., integrating(More)
Texture variation on real-world objects often correlates with underlying geometric characteristics and creates a visually rich appearance. We present a technique to transfer such geometry-dependent texture variation from an example textured model to new geometry in a visually consistent way. It captures the correlation between a set of geometric features,(More)
Commodity graphics hardware has become increasingly programmable over the last few years but has been limited to fixed resource allocation. These architectures handle some workloads well, others poorly; load-balancing to maximize graphics hardware performance has become a critical issue. In this paper, we explore one solution to this problem using(More)