Learn More
A series of novel 4-oxopyrimidine TRPV1 antagonists was evaluated in assays measuring the blockade of capsaicin or acid-induced influx of calcium into CHO cells expressing TRPV1. The investigation of the structure-activity relationships in the heterocyclic A-region revealed the optimum pharmacophoric elements required for activity in this series and(More)
The vanilloid receptor-1 (TRPV1 or VR1) is a member of the transient receptor potential (TRP) family of ion channels and plays a role in regulating the function of sensory nerves. A growing body of evidence demonstrates the therapeutic potential of TRPV1 modulators, particularly in the management of pain. As a result of our screening efforts, we identified(More)
The vanilloid receptor-1 (VR1 or TRPV1) is a member of the transient receptor potential (TRP) family of ion channels and plays a role as an integrator of multiple pain-producing stimuli. From a high-throughput screening assay, measuring calcium uptake in TRPV1-expressing cells, we identified an N-aryl trans-cinnamide (AMG9810, compound 9) that acts as a(More)
In a series of bradykinin B1 antagonists, we discovered that replacement of oxopiperazine acetamides with dehydro-oxopiperazine acetamides provided compounds with enhanced activity against the B1 receptor. The synthesis and SAR leading to potent analogs with reduced molecular weight will be discussed.
Novel alphavbeta3 antagonists based on the N-aryl-gamma-lactam scaffold were prepared. SAR studies led to the identification of potent antagonists for alphavbeta3 receptor with excellent selectivity against the structurally related alpha(IIb)beta3 receptor. Additional interactions of N-aryl-gamma-lactam derivatives with alphavbeta3 were found when compared(More)
The discovery of novel and highly potent oxopiperazine based B1 receptor antagonists is described. Compared to the previously described arylsulfonylated (R)-3-amino-3-phenylpropionic acid series, the current compounds showed improved in vitro potency and metabolic stability. Compound 17,(More)
  • 1