Learn More
Graphene has attracted much interest in both academia and industry. The challenge of making it semiconducting is crucial for applications in electronic devices. A promising approach is to reduce its physical size down to the nanometer scale. Here, we present the surface-assisted bottom-up fabrication of atomically precise armchair graphene nanoribbons(More)
Adv. Mater. 2008, 20, 1–4 2008 WILEY-VCH Verlag Gmb Since its successful fabrication by cleavage in 2004, graphene has attracted great interest because of its novel properties and potential applications. All the existing fabrication methods, however, are limited to producing singleand multilayer graphene up to only a few tens of micrometers in dimension,(More)
The self-assembly of nonplanar chloroaluminum phthalocyanine (ClAlPc) molecules as well-ordered single-molecule dipole arrays on the silicon carbide (SiC) nanomesh substrate was investigated using low temperature scanning tunneling microscopy. ClAlPc exclusively adsorbs in the center of the SiC nanomesh holes with its inherent dipole (from Cl to Al)(More)
The search for realistic materials capable of supporting the room temperature quantum spin Hall (QSH) effect remains a challenge, especially when compatibility with the current electronics industry is required. We report a theoretical prediction to identify halogenated silicon films as excellent candidates, which demonstrate high stability, flexibility, and(More)
The molecular orientations of copper phthalocyanine (CuPc) organic semiconductor molecules on hydrogenated and bare diamond (001)-2 x 1 surfaces are studied using synchrotron-based photoemission spectroscopy (PES) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Angular-dependent NEXAFS reveals that the CuPc molecular assemblies are(More)
We studied the mechanism of half-metallicity (HM) formation in transition-metal-doped conjugated carbon based structures by first-principles electronic structure simulations. It is found that the HM is a rather complex phenomenon, determined by the ligand field splitting of d-orbitals of the transition metal atoms, the exchange splitting and the number of(More)
Low-temperature scanning tunneling microscope investigations reveal that hexabromobenzene (HBB) molecules arrange in either hexagonally closely packed (hcp) [Formula: see text] or tetragonal [Formula: see text] structure on Au(111) dependent on a small substrate temperature difference around 300 K. The underlying mechanism is investigated by density(More)
  • 1