Learn More
Demyelinating diseases, such as multiple sclerosis, are characterized by the loss of the myelin sheath around neurons, owing to inflammation and gliosis in the central nervous system (CNS). Current treatments therefore target anti-inflammatory mechanisms to impede or slow disease progression. The identification of a means to enhance axon myelination would(More)
Peripheral myelin protein-22 (PMP22) is primarily expressed in the compact myelin of the peripheral nervous system. Levels of PMP22 have to be tightly regulated since alterations of PMP22 levels by mutations of the PMP22 gene are responsible for >50 % of all patients with inherited peripheral neuropathies, including Charcot–Marie–Tooth type-1A (CMT1A) with(More)
This study was undertaken to elucidate the molecular mechanisms by which lithium regulates the development of spinal cord-derived neural progenitor cells (NPCs) in vitro and after transplanted in vivo. Our results show that lithium at the therapeutic concentration significantly increases the proliferation and neuronal differentiation of NPCs in vitro.(More)
In traumatic spinal cord injury, loss of neurological function is due to the inability of damaged axons to regenerate across large, cystic cavities. It has recently been demonstrated that a self-assembled nanofiber scaffold (SAPNS) could repair the injured optical pathway and restore visual function. To demonstrate the possibility of using it to repair(More)
OBJECTIVE The peripheral myelin protein-22 (PMP22) gene is associated with the most common types of inherited neuropathies, including hereditary neuropathy with liability to pressure palsies (HNPP) caused by PMP22 deficiency. However, the function of PMP22 has yet to be defined. Our previous study has shown that PMP22 deficiency causes an impaired(More)
Colorectal cancer (CRC) is a major cause of cancer-related mortality in the world. Recently, a number of studies have demonstrated that cancer stem cells (CSCs) present in colorectal cancer tissues, are responsible for resistance to conventional therapies. Therefore, effective recognition of CSCs is of great importance.(More)
UNLABELLED Peripheral nerve injury still remains a refractory challenge for both clinical and basic researchers. A novel nanofiber conduit made of blood vessel and filled with amphiphilic hydrogel of self-assembling nanofiber scaffold (SAPNS) was implanted to repair a 10 mm nerve gap after sciatic nerve transection. Empty blood vessel conduit was implanted(More)
Cyclosporine is one of the foremost immunosuppressive agents for cell, tissue, and organ transplantation. Cyclosporine is, however, associated with significant side effects in the host, and may also affect the fate of the donor cells. This study was performed to test whether cyclosporine may change the fate of neural stem cells, as neural stem cell(More)
NogoA, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein are CNS myelin molecules that bind to the neuronal Nogo-66 receptor (NgR) and inhibit axon growth. The NgR antagonist, soluble NgR1-Fc protein (sNgR-Fc), facilitates axon regeneration by neutralizing the inhibitory effects of myelin proteins in experimental models of CNS(More)
In this study, we developed a novel artificial nerve graft termed self-assembling peptide nanofiber scaffold (SAPNS)-containing poly(lactic-co-glycolic acid) (PLGA) conduit (SPC) and used it to bridge a 10-mm-long sciatic nerve defect in the rat. Retrograde tracing, behavioral testing and histomorphometric analyses showed that compared with the empty PLGA(More)