Learn More
Huntington's disease (HD) represents an important model for neurodegenerative disorders and proteinopathies. It is mainly caused by cytotoxicity of the mutant huntingtin protein (Htt) with an expanded polyQ stretch. While Htt is ubiquitously expressed, HD is characterized by selective neurodegeneration of the striatum. Here we report a striatal-enriched(More)
The blood-brain barrier (BBB) prevents most drugs from reaching the site of central nervous system (CNS) diseases, intensively confining the therapeutic efficiency. Angiopep-2 (here termed (L)Angiopep), which is a 19-mer peptide derived from human Kunitz domain, can trigger transcytosis and traverse the BBB by recognizing low density lipoprotein-related(More)
High-throughput measurement of huntingtin (Htt) levels is useful for Huntington's disease research. For example, identification of genetic or chemical modifiers that reduce Htt levels by high-throughput screening provides promising strategy for HD drug discovery. In the human cells, high-throughput measurement of Htt levels has been established based on the(More)
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder affecting about 1% of the worldwide population over the age of 60 (El-Agnaf, 2003; Majbour, Vaikath et al., 2016). Motor symptoms, which is currently the major trait for PD diagnosis, appear when 50%–60% of dopaminergic neurons in the substantia nigra (SN) and 70%–80% of(More)
Water-based lubrication provides cheap and environmentally friendly lubrication and, although hydrophilic surfaces are preferred in water-based lubrication, often lubricating surfaces do not retain water molecules during shear. We show here that hydrophilic (42° water contact angle) quartz surfaces facilitate water-based lubrication to the same extent as(More)
This paper reports studies on preparation and evaluation of amoxicillin loaded dual molecularly imprinted nanoparticles (Amo/Dual-MIPs) designed for anti-H. pylori therapy. Both MNQA and AmoNa were chosen as templates to prepare Dual-MIPs using inverse microemulsion polymerization method. NQA was modified with myristic acid (MNQA) to become amphiphilic and(More)
This paper reports investigations into the preparation and characterization of surface molecularly imprinted nanoparticles (SMINs) designed to adhere to Helicobacter pylori (H. pylori). Imprinted nanoparticles were prepared by the inverse microemulsion polymerization method. A fraction of Lpp20, an outer membrane protein of H. pylori known as NQA, was(More)
  • 1