Jiaojiao Niu

Learn More
Acidithiobacillus thiooxidans (A. thiooxidans), a chemolithoautotrophic extremophile, is widely used in the industrial recovery of copper (bioleaching or biomining). The organism grows and survives by autotrophically utilizing energy derived from the oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs). However, the lack of genetic(More)
Cultivated sesame (Sesamum indicum L.) is an important oil crop because of its high oil content and quality. In order to discover the single nucleotide polymorphisms (SNPs) and insertion/deletions (InDels) in RNA-Seq, we collected a total of 33.47 Gbp of data from three sesame transcriptome datasets. A reference transcriptome covering 267,508 unigenes was(More)
The draft genome of Acidithiobacillus thiooxidans A01 contains 3,820,158 bp, with a G+C content of 53.08% and 3,660 predicted coding sequences (CDSs). The bacterium contains a series of specific genes involved in the oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs).
The interaction mechanism between microbial communities and environment is a key issue in microbial ecology. Microbial communities usually change significantly under environmental stress, which has been studied both phylogenetically and functionally, however which method is more effective in assessing the relationship between microbial communities shift and(More)
This study used an artificial enrichment microbial consortium to examine the effects of different substrate conditions on microbial diversity, composition, and function (e.g., zinc leaching efficiency) through adding pyrite (SP group), chalcopyrite (SC group), or both (SPC group) in sphalerite bioleaching systems. 16S rRNA gene sequencing analysis showed(More)
Metagenomics allows us to acquire the potential resources from both cultivatable and uncultivable microorganisms in the environment. Here, shotgun metagenome sequencing was used to investigate microbial communities from the surface layer of low grade copper tailings that were industrially bioleached at the Dexing Copper Mine, China. A bioinformatics(More)
Response of biological communities to environmental stresses is a critical issue in ecology, but how microbial communities shift across heavy metal gradients remain unclear. To explore the microbial response to heavy metal contamination (e.g., Cr, Mn, Zn), the composition, structure and functional potential of sedimentary microbial community were(More)
The microbial communities are important for minerals decomposition in biological heap leaching system. However, the differentiation and relationship of composition and function of microbial communities between leaching heap (LH) and leaching solution (LS) are still unclear. In this study, 16S rRNA gene sequencing was used to assess the microbial communities(More)
Bioleaching has been employed commercially to recover metals from low grade ores, but the production efficiency remains to be improved due to limited understanding of the system. This study examined the shift of microbial communities and S&Fe cycling in three subsystems within a copper ore bioleaching system: leaching heap (LH), leaching solution (LS) and(More)
Soil bacteria are very important in biogeochemical cycles and play significant role in soil-borne disease suppression. Although continuous cropping is responsible for soil-borne disease enrichment, its effect on tobacco plant health and how soil bacterial communities change are yet to be elucidated. In this study, soil bacterial communities across tobacco(More)