Learn More
Everyday tasks often require us to keep track of multiple objects in dynamic scenes. Past studies show that tracking becomes more difficult as objects move faster. In the present study, we show that this trade-off may not be due to increased speed itself but may, instead, be due to the increased crowding that usually accompanies increases in speed. Here, we(More)
In this work, we propose the design and implementation of a 13.56 MHz GaN Class-E power amplifier, which takes into account transistor parasitic effects. The design uses the parasitic capacitance of the transistor to replace the charging capacitance, simplifying the circuit structure and obtaining a 93.6% efficiency at output power of 26.8 W. In addition, a(More)
We report a new type of holographic interface, which is able to manipulate the three fundamental properties of light (phase, amplitude, and polarization) over a broad wavelength range. The design strategy relies on replacing the large openings of conventional holograms by arrays of subwavelength apertures, oriented to locally select a particular state of(More)
A new surface wave is introduced, the cosine-Gauss beam, which does not diffract while it propagates in a straight line and tightly bound to the metallic surface for distances up to 80 μm. The generation of this highly localized wave is shown to be straightforward and highly controllable, with varying degrees of transverse confinement and directionality, by(More)
Recently an extended series of equally spaced vibrational modes was observed in uranium nitride (UN) by performing neutron spectroscopy measurements using the ARCS and SEQUOIA time-of-flight chopper spectrometers [A. A. Aczel et al., Nat. Commun. 3, 1124 (2012)]. These modes are well described by three-dimensional isotropic quantum harmonic oscillator (QHO)(More)
Light can be coupled into propagating electromagnetic surface waves at a metal-dielectric interface known as surface plasmon polaritons (SPPs). This process has traditionally faced challenges in the polarization sensitivity of the coupling efficiency and in controlling the directionality of the SPPs. We designed and demonstrated plasmonic couplers that(More)
Metallic components such as plasmonic gratings and plasmonic lenses are routinely used to convert free-space beams into propagating surface plasmon polaritons and vice versa. This generation of couplers handles relatively simple light beams, such as plane waves or Gaussian beams. Here we present a powerful generalization of this strategy to more complex(More)
Class IIa histone deacetylases (HDACs) and myocyte enhancer factor 2 (MEF2) proteins compose a signaling module that orchestrates lineage specification during embryogenesis. We show here that this module also regulates the generation of mouse induced pluripotent stem cells by defined transcription factors. Class IIa HDACs and MEF2 proteins rise steadily(More)
We performed argon and krypton laser photocoagulation of the retina and ciliary body on rabbit and monkey eyes using an exolaser probe. Clinically, transscleral retinal lesions produced a white circumscribed reaction. Histologically, we observed necrosis of the retina and choroid. Chronic lesions showed disorganization of the retina and formation of(More)
III-nitride micro-emitter array technology was developed in the authors’ laboratory around 1999. Since its inception, much progress has been made by several groups and the technology has led to the invention of several novel devices. This paper provides an overview on recent progress in single-chip ac-micro-size light emitting diodes (μLEDs) that can be(More)