Jianzhuo Zhu

  • Citations Per Year
Learn More
UNLABELLED A solution processed MoO3/PEDOT:PSS bilayer structure is used as the hole transporting layer to improve the efficiency and stability of planar heterojunction perovskite solar cells. Increased hole extraction efficiency and restrained erosion of ITO by PEDOT PSS are demonstrated in the optimized device due to the incorporation of an MoO3 layer.
In order to study the dependence of water solubility and hydration behavior of nanoparticles on their surface polarity, we designed polar nanoparticles with varying surface polarity by assigning atomic partial charge to the surface of C60. The water solubility of the nanoparticle is enhanced by several orders of magnitude after the introduction of surface(More)
We demonstrate a nondoped white organic light-emitting diode in which the blue, green, and red emissions are generated from 4,4(')-bis(2,2(')-diphenylvinyl)-1,1(')-biphenyl, tris(8-hydroxyquinoline)aluminum, and a submonolayer of 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7- tetramethyl-julolidyl 9-enyl)-4H-pyran layers, respectively. A thin layer of(More)
White light is emitted by an organic light-emitting diode by inserting two blend layers of m-MTDATA:Al(DBM)(3) and TPD:Bphen between an m-MTDATA hole-transporting layer and a Bphen electron-transporting layer, where m-MTDATA, TPD, Al(DBM)(3), and Bphen are 4,4('),4('')-tris[methylpheny(phenyl)amino]-triphenylamine,(More)
The transport properties of water through a nanochannel influenced by the direction of an external electric field has been investigated by using molecular dynamics simulations. Water molecules flow unidirectionally across the nanochannel under a uniform external electric field without an osmotic pressure. It is found that the direction of the external field(More)
We demonstrate high-efficient white organic light-emitting diodes (WOLEDs) based on triplet multiple quantum well (MQW) structure and focus on the influence on WOLEDs through employing different potential barrier materials to form type-I and type-II MQWs, respectively. It is found that type-I MQW structure WOLEDs based on(More)
  • 1