Jianyong Wang

Learn More
The clustering problem is a difficult problem for the data stream domain. This is because the large volumes of data arriving in a stream renders most traditional algorithms too inefficient. In recent years, a few one-pass clustering algorithms have been developed for the data stream problem. Although such methods address the scalability issues of the(More)
Sequential pattern mining is an important data mining problem with broad applications. However, it is also a difficult problem since the mining may have to generate or examine a combinatorially explosive number of intermediate subsequences. Most of the previously developed sequential pattern mining methods, such as GSP, explore a candidate(More)
Previous studies have presented convincing arguments that a frequent pattern mining algorithm should not mine all frequent patterns but only the closed ones because the latter leads to not only more compact yet complete result set but also better efficiency. However, most of the previously developed closed pattern mining algorithms work under the candidate(More)
Mining frequent closed itemsets provides complete and non-redundant results for frequent pattern analysis. Extensive studies have proposed various strategies for efficient frequent closed itemset mining, such as depth-first search vs. breadthfirst search, vertical formats vs. horizontal formats, tree-structure vs. other data structures, top-down vs.(More)
In this paper, we study the problem of effective keyword search over XML documents. We begin by introducing the notion of Valuable Lowest Common Ancestor (VLCA) to accurately and effectively answer keyword queries over XML documents. We then propose the concept of Compact VLCA (CVLCA) and compute the meaningful compact connected trees rooted as CVLCAs as(More)
Conventional keyword search engines are restricted to a given data model and cannot easily adapt to unstructured, semi-structured or structured data. In this paper, we propose an efficient and adaptive keyword search method, called EASE, for indexing and querying large collections of heterogenous data. To achieve high efficiency in processing keyword(More)
Graph data have become ubiquitous and manipulating them based on similarity is essential for many applications. Graph edit distance is one of the most widely accepted measures to determine similarities between graphs and has extensive applications in the fields of pattern recognition, computer vision etc. Unfortunately, the problem of graph edit distance(More)
In recent years, advances in hardware technology have facilitated new ways of collecting data continuously. In many applications such as network monitoring, the volume of such data is so large that it may be impossible to store the data on disk. Furthermore, even when the data can be stored, the volume of the incoming data may be so large that it may be(More)
The data stream problem has been studied extensively in recent years, because of the great ease in collection of stream data. The nature of stream data makes it essential to use algorithms which require only one pass over the data. Recently, single-scan, stream analysis methods have been proposed in this context. However, a lot of stream data is(More)