Jianyang Zeng

Learn More
RNA-binding proteins (RBPs) play important roles in the post-transcriptional control of RNAs. Identifying RBP binding sites and characterizing RBP binding preferences are key steps toward understanding the basic mechanisms of the post-transcriptional gene regulation. Though numerous computational methods have been developed for modeling RBP binding(More)
MOTIVATION In silico prediction of drug-target interactions plays an important role toward identifying and developing new uses of existing or abandoned drugs. Network-based approaches have recently become a popular tool for discovering new drug-target interactions (DTIs). Unfortunately, most of these network-based approaches can only predict binary(More)
Container terminals play an important role in global cargo transportation and they have become an essential intermodal interface between the sea and the land. In the container terminal, the service area is often arranged into rectangular blocks, which leads to a mesh-like path topology. We present a mathematical model for general container routing in mesh(More)
In order to investigate the routing aspects of small-world networks, Kleinberg [13] proposes a network model based on a d-dimensional lattice with long-range links chosen at random according to the d-harmonic distribution. Kleinberg shows that the greedy routing algorithm by using only local information performs in O(lg n) expected number of hops, where n(More)
Rapid and correct identification of RNA-binding residues based on the protein primary sequences is of great importance. In most prevalent machine-learning-based identification methods; however, either some features are inefficiently represented, or the redundancy between features is not effectively removed. Both problems may weaken the performance of a(More)
In mammals, chromatin organization undergoes drastic reprogramming after fertilization. However, the three-dimensional structure of chromatin and its reprogramming in preimplantation development remain poorly understood. Here, by developing a low-input Hi-C (genome-wide chromosome conformation capture) approach, we examined the reprogramming of chromatin(More)
Protein loops often play important roles in biological functions. Modeling loops accurately is crucial to determining the functional specificity of a protein. Despite the recent progress in loop prediction approaches, which led to a number of algorithms over the past decade, few rigorous algorithmic approaches exist to model protein loops using global(More)
One bottleneck in NMR structure determination lies in the laborious and time-consuming process of side-chain resonance and NOE assignments. Compared to the well-studied backbone resonance assignment problem, automated side-chain resonance and NOE assignments are relatively less explored. Most NOE assignment algorithms require nearly complete side-chain(More)
We present a novel structure determination approach that exploits the global orientational restraints from RDCs to resolve ambiguous NOE assignments. Unlike traditional approaches that bootstrap the initial fold from ambiguous NOE assignments, we start by using RDCs to compute accurate secondary structure element (SSE) backbones at the beginning of(More)