Jianxiong Xiao

Learn More
Scene recognition is one of the hallmark tasks of computer vision, allowing definition of a context for object recognition. Whereas the tremendous recent progress in object recognition tasks is due to the availability of large datasets like ImageNet and the rise of Convolutional Neural Networks (CNNs) for learning high-level features, performance at scene(More)
Scene categorization is a fundamental problem in computer vision. However, scene understanding research has been constrained by the limited scope of currently-used databases which do not capture the full variety of scene categories. Whereas standard databases for object categorization contain hundreds of different classes of objects, the largest available(More)
3D shape is a crucial but heavily underutilized cue in today's computer vision systems, mostly due to the lack of a good generic shape representation. With the recent availability of inexpensive 2.5D depth sensors (e.g. Microsoft Kinect), it is becoming increasingly important to have a powerful 3D shape representation in the loop. Apart from category(More)
Although RGB-D sensors have enabled major break-throughs for several vision tasks, such as 3D reconstruction, we have not attained the same level of success in high-level scene understanding. Perhaps one of the main reasons is the lack of a large-scale benchmark with 3D annotations and 3D evaluation metrics. In this paper, we introduce an RGB-D benchmark(More)
We present ShapeNet: a richly-annotated, large-scale repository of shapes represented by 3D CAD models of objects. ShapeNet contains 3D models from a multitude of semantic categories and organizes them under the WordNet taxonomy. It is a collection of datasets providing many semantic annotations for each 3D model such as consistent rigid alignments, parts(More)
Despite significant progress, tracking is still considered to be a very challenging task. Recently, the increasing popularity of depth sensors has made it possible to obtain reliable depth easily. This may be a game changer for tracking, since depth can be used to prevent model drift and handle occlusion. We also observe that current tracking algorithms are(More)
Existing scene understanding datasets contain only a limited set of views of a place, and they lack representations of complete 3D spaces. In this paper, we introduce SUN3D, a large-scale RGB-D video database with camera pose and object labels, capturing the full 3D extent of many places. The tasks that go into constructing such a dataset are difficult in(More)
When glancing at a magazine, or browsing the Internet, we are continuously being exposed to photographs. Despite this overflow of visual information, humans are extremely good at remembering thousands of pictures along with some of their visual details. But not all images are equal in memory. Some stitch to our minds, and other are forgotten. In this paper(More)
Today, there are two major paradigms for vision-based autonomous driving systems: mediated perception approaches that parse an entire scene to make a driving decision, and behavior reflex approaches that directly map an input image to a driving action by a regressor. In this paper, we propose a third paradigm: a direct perception approach to estimate the(More)