Learn More
Cymbidium sinense belongs to the Orchidaceae, which is one of the most abundant angiosperm families. C. sinense, a high-grade traditional potted flower, is most prevalent in China and some Southeast Asian countries. The control of flowering time is a major bottleneck in the industrialized development of C. sinense. Little is known about the mechanisms(More)
To facilitate genetic improvement, an efficient system of embryogenic culture induction, maintenance and transformation in Vitis vinifera cv. Chardonnay was developed using picloram. Whole flowers produced the most embryogenic calluses on induction media containing Murashige and Skoog’s (MS) basal salts and 3.0 mg L−1 picloram with different concentrations(More)
Histone acetylation and deacetylation at the N-terminus of histone tails play crucial roles in the regulation of eukaryotic gene activity. Histone acetylation and deacetylation are catalyzed by histone acetyltransferases and histone deacetylases (HDACs), respectively. A growing number of studies have demonstrated the importance of histone(More)
The FLOWERING LOCUS T (FT) gene plays crucial roles in regulating the transition from the vegetative to reproductive phase. To understand the molecular mechanism of reproduction, three homologous FT genes were isolated and characterized from Cymbidium sinense "Qi Jian Bai Mo", Cymbidium goeringii and Cymbidium ensifolium "Jin Si Ma Wei". The three genes(More)
To establish an efficient regeneration protocol for functional validation and variety resistance improvement, a long-term system that useful for embryogenic culture maintenance and transformation was developed through recurrent cycles of secondary embryogenesis from Vitis vinifera L. cv. Thompson Seedless. Three media and five types of somatic embryo in(More)
Histone acetyltransferases (HATs) play an important role in eukaryotic transcription. Eight HATs identified in rice (OsHATs) can be organized into four families, namely the CBP (OsHAC701, OsHAC703, and OsHAC704), TAFII250 (OsHAF701), GNAT (OsHAG702, OsHAG703, and OsHAG704), and MYST (OsHAM701) families. The biological functions of HATs in rice remain(More)
The stilbene synthase gene VqSTS6, from Chinese wild type Vitis quinquangularis accession Danfeng-2, increases the resveratrol content and pathogen resistance of transgenic plants of V. vinifera Thompson Seedless. This study successfully created transgenic plants of V. vinifera Thompson Seedless which overexpressed VqSTS6, cloned from Chinese wild type V.(More)
Dendrobium officinale is a traditional Chinese medicinal plant. The stems of D. officinale contain mannan polysaccharides, which are promising bioactive polysaccharides for use as drugs. However, the genes involved in the biosynthesis of mannan polysaccharides in D. officinale have not yet been identified. In this study, four digital gene expression(More)
PISTILLATA (PI)-like genes are crucial regulators of flowering in angiosperms. A homologue of PI, designated as AcPI (Genbank accession number HQ717796), was isolated from pineapple cultivar Comte de Paris by reverse transcriptase polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The cDNA sequence of AcPI is 907 bp in length(More)
The Orchidaceae is one of the largest families in the plant kingdom and orchid mycorrhizae (OM) are indispensable in the life cycle of all orchids under natural conditions. In spite of this, little is known concerning the mechanisms underlying orchid- mycorrhizal fungi interactions. Our previous work demonstrated that the non-mycorrhizal fungus Umbelopsis(More)