Learn More
High-precision motion estimation has become essential in ultrasound-based techniques such as time-domain Doppler and elastography. Normalized cross-correlation (NCC) has been shown as one of the best motion estimators. However, a significant drawback is its associated computational cost, especially when RF signals are used. In this paper, a method based on(More)
BACKGROUND Arterial stiffening is recognized to be associated with increased cardiovascular mortality and to be a major cause of several cardiovascular complications. Pulse wave velocity (PWV) has been widely accepted to be a reliable and robust measure of arterial stiffness. In this article, the novel ultrasound-based pulse wave imaging (PWI) method is(More)
The abdominal aortic aneurysm (AAA) is a common vascular disease. The current clinical criterion for treating AAAs is an increased diameter above a critical value. However, the maximum diameter does not correlate well with aortic rupture, the main cause of death from AAA disease. AAA disease leads to changes in the aortic wall mechanical properties. The(More)
The Savitzky–Golay (SG) filters are generally used for smoothing and differentiation in many fields. The properties of the SG smoothing filters have been well studied. However, the properties of the SG differentiation filters or SG digital differentiators (SGDD, for the first order differentiation) are not developed well somehow, although they have been(More)
Harmonic motion imaging for focused ultrasound (HMIFU) is a novel high-intensity focused ultrasound (HIFU) therapy monitoring method with feasibilities demonstrated in vitro, ex vivo and in vivo. Its principle is based on amplitude-modulated (AM) - harmonic motion imaging (HMI), an oscillatory radiation force used for imaging the tissue mechanical response(More)
Pharmacokinetic rates have the potential to provide quantitative physiological and pathological information for biological studies and drug development. Fluorescence molecular tomography (FMT) is an attractive imaging tool for three-dimensionally resolving fluorophore distribution in small animals. In this letter, pharmacokinetic rates of indocyanine green(More)
High frame-rate ultrasound RF data acquisition has been proved to be critical for novel cardiovascular imaging techniques, such as high-precision myocardial elastography, pulse wave imaging (PWI), and electromechanical wave imaging (EWI). To overcome the frame-rate limitations on standard clinical ultrasound systems, we developed an automated method for(More)
The pulse-wave velocity (PWV) has been used as an indicator of vascular stiffness, which can be an early predictor of cardiovascular mortality. A noninvasive, easily applicable method for detecting the regional pulse wave (PW) may contribute as a future modality for risk assessment. The purpose of this study was to demonstrate the feasibility and(More)
Noninvasive quantification of regional arterial stiffness, such as measurement of the pulse wave velocity (PWV), has been shown to be of high clinical importance. Pulse wave imaging (PWI) has been previously developed by our group to visualize the propagation of the pulse wave along the aorta and to estimate the regional PWV. The objective of this paper is(More)
Electromechanical Wave Imaging (EWI) is a non-invasive, ultrasound-based imaging method capable of mapping the electromechanical wave (EW) in vivo, i.e. the transient deformations occurring in response to the electrical activation of the heart. Optimal imaging frame rates, in terms of the elastographic signal-to-noise ratio, to capture the EW cannot be(More)