Jianwei Bian

Learn More
Glucokinase is a key regulator of glucose homeostasis, and small molecule allosteric activators of this enzyme represent a promising opportunity for the treatment of type 2 diabetes. Systemically acting glucokinase activators (liver and pancreas) have been reported to be efficacious but in many cases present hypoglycaemia risk due to activation of the(More)
Compound 4 (PF-04971729) belongs to a new class of potent and selective sodium-dependent glucose cotransporter 2 inhibitors incorporating a unique dioxa-bicyclo[3.2.1]octane (bridged ketal) ring system. In this paper we present the design, synthesis, preclinical evaluation, and human dose predictions related to 4. This compound demonstrated robust urinary(More)
The medicinal chemistry and preclinical biology of imidazopyridine-based inhibitors of diacylglycerol acyltransferase 2 (DGAT2) is described. A screening hit 1 with low lipophilic efficiency (LipE) was optimized through two key structural modifications: (1) identification of the pyrrolidine amide group for a significant LipE improvement, and (2) insertion(More)
[structure: see text] The multistep synthesis of a calixarene joined to a second calixarene via a long spacer is described. Since each calixarene bears multiple galactose-based units (known to bind strongly to rat hepatoma cells), there existed the possibility of cross-linking the cancer cells into a network. The compounds did not serve this purpose, a fact(More)
Identification of orally active, small molecule antagonists of the glucagon receptor represents a novel treatment paradigm for the management of type 2 diabetes mellitus. The present work discloses novel glucagon receptor antagonists, identified via conformational constraint of current existing literature antagonists. Optimization of lipophilic ligand(More)
A novel and potent small molecule glucagon receptor antagonist for the treatment of diabetes mellitus is reported. This candidate, (S)-3-[4-(1-{3,5-dimethyl-4-[4-(trifluoromethyl)-1H-pyrazol-1-yl]phenoxy}butyl)benzamido]propanoic acid, has lower molecular weight and lipophilicity than historical glucagon receptor antagonists, resulting in excellent(More)
The nigellamine alkaloids are dolabellane diterpenes displaying potent lipid metabolism-promoting activity. Total synthesis of (+)- and (-)-nigellamine A2 has been accomplished. Absolute stereochemistry of synthetic nigellamine A2 was established through an intramolecular asymmetric allylic alkylation using a Pd(phosphinooxazoline) catalyst. Other notable(More)
A novel series of glucagon receptor antagonists has been discovered. These pyrazole ethers and aminopyrazoles have lower molecular weight and increased polarity such that the molecules fall into better drug-like property space. This work has culminated in compounds 44 and 50 that were shown to have good pharmacokinetic attributes in dog, in contrast to(More)
Functionalized alpha-amino acid building blocks have been prepared in good yield with high regiocontrol and preservation of stereochemistry via iridium-catalyzed borylation of suitably protected aromatic alpha-amino acid derivatives. The utility of these systems in peptide couplings and Suzuki reactions has been demonstrated.
Glucokinase activators are a class of experimental agents under investigation as a therapy for Type 2 diabetes mellitus. An X-ray crystal structure of a modestly potent agent revealed the potential to substitute the common heterocyclic amide donor-acceptor motif for a pyridone moiety. We have successfully demonstrated that both pyridone and pyrimidone(More)