Learn More
Decay-accelerating factor ([DAF] CD55) is a glycosylphosphatidylinositol-anchored membrane inhibitor of complement with broad clinical relevance. Here, we establish an additional and unexpected role for DAF in the suppression of adaptive immune responses in vivo. In both C57BL/6 and BALB/c mice, deficiency of the Daf1 gene, which encodes the murine(More)
Despite active investigation of copolymer-1 (Cop-1) for nearly 40 years the mechanisms underlying its neuroprotective properties remain contentious. Nonetheless, current dogma for Cop-1 neuroprotective activities in autoimmune and neurodegenerative diseases include bystander suppression of autoimmune T cells and attenuation of microglial responses. In this(More)
Microglia, a primary immune effector cell of the central nervous system (CNS) affects homeostatic, neuroprotective, regenerative and degenerative outcomes in health and disease. Despite these broad neuroimmune activities linked to specific environmental cues, a precise cellular genetic profile for microglia in the context of disease and repair has not been(More)
The studies presented here demonstrate the protective effect of acetyl-L-carnitine (ALC) against alcohol-induced oxidative neuroinflammation, neuronal degeneration, and impaired neurotransmission. Our findings reveal the cellular and biochemical mechanisms of alcohol-induced oxidative damage in various types of brain cells. Chronic ethanol administration to(More)
BACKGROUND HIV-1-infected and immune competent brain mononuclear phagocytes (MP; macrophages and microglia) secrete cellular and viral toxins that affect neuronal damage during advanced disease. In contrast, astrocytes can affect disease by modulating the nervous system's microenvironment. Interestingly, little is known how astrocytes communicate with MP to(More)
Human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) usually occurs late in the course of HIV-1 infection and the mechanisms underlying HAD pathogenesis are not well understood. Accumulating evidence indicates that neuronal voltage-gated potassium (Kv) channels play an important role in memory processes and acquired neuronal channelopathies(More)
Microglia are critical cells in mediating the pathophysiology of neurodegenerative disorders such as HIV-associated neurocognitive disorders. We hypothesize that HIV-1 glycoprotein 120 (gp120) activates microglia by enhancing outward K(+) currents, resulting in microglia secretion of neurotoxins, consequent neuronal dysfunction, and death. To test this(More)
Macrophages play an important role in brain immune and inflammatory responses. They are also critical cells in mediating the pathology of neurodegenerative disorders such as HIV-associated dementia. This is largely through their capacity to secrete a variety of bioactive molecules such as cytokines, leading to neuronal dysfunction and/or death. Accumulating(More)
In addition to its well-characterized effects in immune system, chemokine CC motif ligand 2 (CCL2, formerly known as monocyte chemoattractant protein-1) is believed to play an important role in brain physiological and pathological processes. It has been shown that CCL2 and its cognate receptor chemokine CC motif receptor 2 are constitutively expressed in(More)