Learn More
Mouse embryonic stem (ES) cells are continuous cell lines derived from the inner mass of blastocysts. Neural progenitors derived from these cells serve as an excellent model for controlled neural differentiation and as such have tremendous potential to understand and treat neurodegenerative diseases. Here, we demonstrate that ES cell-derived neural(More)
Decay-accelerating factor ([DAF] CD55) is a glycosylphosphatidylinositol-anchored membrane inhibitor of complement with broad clinical relevance. Here, we establish an additional and unexpected role for DAF in the suppression of adaptive immune responses in vivo. In both C57BL/6 and BALB/c mice, deficiency of the Daf1 gene, which encodes the murine(More)
HIV-1-associated neurocognitive impairments are intrinsically linked to microglial immune activation, persistent viral infection, and inflammation. In the era of antiretroviral therapy, more subtle cognitive impairments occur without adaptive immune compromise. We posit that adaptive immunity is neuroprotective, serving in both the elimination of infected(More)
In addition to its well-characterized effects in immune system, chemokine CC motif ligand 2 (CCL2, formerly known as monocyte chemoattractant protein-1) is believed to play an important role in brain physiological and pathological processes. It has been shown that CCL2 and its cognate receptor chemokine CC motif receptor 2 are constitutively expressed in(More)
The studies presented here demonstrate the protective effect of acetyl-L-carnitine (ALC) against alcohol-induced oxidative neuroinflammation, neuronal degeneration, and impaired neurotransmission. Our findings reveal the cellular and biochemical mechanisms of alcohol-induced oxidative damage in various types of brain cells. Chronic ethanol administration to(More)
Renal ischemia-reperfusion injury (IRI) is a feature of ischemic acute renal failure and it impacts both short- and long-term graft survival after kidney transplantation. Complement activation has been implicated in renal IRI, but its mechanism of action is uncertain and the determinants of complement activation during IRI remain poorly understood. We(More)
Vaccination therapy of AD animal models and patients strongly suggests an active role of brain mononuclear phagocytes in immune-mediated clearance of amyloid-beta peptides (Abeta) in brain. Although Abeta uptake by macrophages can be regulated by pro- and anti-inflammatory cytokines, their effects on macrophage-mediated Abeta degradation are poorly(More)
Human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) usually occurs late in the course of HIV-1 infection and the mechanisms underlying HAD pathogenesis are not well understood. Accumulating evidence indicates that neuronal voltage-gated potassium (Kv) channels play an important role in memory processes and acquired neuronal channelopathies(More)
Currently, there is no effective treatment for photoreceptor degeneration, the most common cause of blindness caused by diseases like retinitis pigmentosa, age-related macular degeneration, and diabetic retinopathy. Two promising approaches include cell therapy to replace degenerating cells and neuroprotection to rescue affected cells from premature death.(More)
The human immunodeficiency virus (HIV) invades the central nervous system early after viral exposure but causes progressive cognitive, behavior, and motor impairments years later with the onset of immune deficiency. Although in the brain, HIV preferentially replicates productively in cells of mononuclear phagocyte (MP; blood borne macrophage and microglia),(More)