Learn More
A large amount of 2D drawings have been produced in engineering fields. To reuse and share the available drawings efficiently, we propose two methods in this paper, namely 2.5D spherical harmonics transformation and 2D shape histogram, to retrieve 2D drawings by measuring their shape similarity. The first approach represents a drawing as a spherical(More)
Segmentation of the lungs in chest-computed tomography (CT) is often performed as a preprocessing step in lung imaging. This task is complicated especially in presence of disease. This paper presents a lung segmentation algorithm called adaptive border marching (ABM). Its novelty lies in the fact that it smoothes the lung border in a geometric way and can(More)
Identification of pulmonary fissures, which form the boundaries between the lobes in the lungs, may be useful during clinical interpretation of computed tomography (CT) examinations to assess the early presence and characterization of manifestation of several lung diseases. Motivated by the unique nature of the surface shape of pulmonary fissures in 3-D(More)
The authors present a new computerized scheme to automatically detect lung nodules depicted on computed tomography (CT) images. The procedure is performed in the signed distance field of the CT images. To obtain an accurate signed distance field, CT images are first interpolated linearly along the axial direction to form an isotropic data set. Then a lung(More)
As one of the most prevalent chronic disorders, airway disease is a major cause of morbidity and mortality worldwide. In order to understand its underlying mechanisms and to enable assessment of therapeutic efficacy of a variety of possible interventions, noninvasive investigation of the airways in a large number of subjects is of great research interest.(More)
Lobe identification in computed tomography (CT) examinations is often an important consideration during the diagnostic process as well as during treatment planning because of their relative independence of each other in terms of anatomy and function. In this paper, we present a new automated scheme for segmenting lung lobes depicted on 3-D CT examinations.(More)
In this paper, a method is proposed to retrieve desired 3D models by measuring the similarity between a user’s freehand sketches and 2D orthogonal views generated from 3D models. The proposed method contains three parts: (1) pose determination of a 3D model; (2) 2D orthogonal view generation along the orientations; and (3) similarity measurement between a(More)
Freehand sketching is widely regarded as an efficient and natural way for interaction between computers and humans. We present a robust computerized scheme to automatically segment freehand sketches into a series of components with specific geometric meaning regardless of whether these are generated online or offline. This task is a necessary first step(More)
Similarity measuring is a key problem for 3D model retrieval. We propose a novel shape descriptor "thickness histogram" (TH) by uniformly estimating thickness of a model using statistical methods. It is translation and rotation-invariant, discriminative to different shapes, and very efficient to compute with the shape distribution (SD) proposed by Osada(More)