Jianpeng Wang

Learn More
We examined the hypothesis that processes related to DNA recombination and repair are involved in learning and memory. Rats received intracerebroventricular (i.c.v.) infusions of the antimetabolite 1-beta-D-arabinofuranosylcytosine triphosphate (ara-CTP) or its precursor cytosine arabinoside (ara-C) 30 min prior to conditioned taste aversion (CTA) training.(More)
Genomic recombination requires cutting, processing, and rejoining of DNA by endonucleases, polymerases, and ligases, among other factors. We have proposed that DNA recombination mechanisms may contribute to long-term memory (LTM) formation in the brain. Our previous studies with the nucleoside analog 1-beta-D-arabinofuranosylcytosine triphosphate (ara-CTP),(More)
To label proteins covalently, one faces a trade-off between labeling a protein specifically and using a small tag. Often one must compromise one parameter for the other or use additional components, such as an enzyme, to satisfy both requirements. Here, we report a new reaction that covalently labels proteins by using engineered coiled-coil peptides.(More)
Mesoporous materials have recently gained much attention owing to their large surface area, narrow pore size distribution, and superior pore structure. These materials have been demonstrated as excellent solid supports for immobilization of a variety of proteins and enzymes for their potential applications as biocatalysts in the chemical and pharmaceutical(More)
Multienzyme complexes are of paramount importance in biosynthesis in cells. Yet, how sequential enzymes of cascade catalytic reactions synergize their activities through spatial organization remains elusive. Recent development of site-specific protein-nanoparticle conjugation techniques enables us to construct multienzyme assemblies using nanoparticles as(More)
A class of wideband microstrip-to-microstrip vertical transitions is proposed via multiresonant modes in a slotline resonator formed on their common ground plane. The slot acts as a multimode resonator with microstrip lines at its two sides as the input and output terminals. Multiresonant modes in this slotline resonator can be properly excited by setting a(More)
Specific protein-peptide interactions are prevalent in the living cells and form a tightly regulated signaling network. These interactions, many of which have structural information revealed, provide ideal templates for affinity-guided covalent bioconjugation. Here we report the development of a set of four new reactions that covalently and(More)
A new microstrip ultra-wideband (UWB) bandpass filter (BPF) with triple-notched bands is presented in this paper. The circuit topology and its corresponding electrical parameters of the initial microstrip UWB BPF are desired by a variation of genetic algorithm (VGA). Then, triple-notched bands inside the UWB passband are implemented by coupling a square(More)
A new microstrip ultra-wideband (UWB) bandpass filter (BPF) with dual sharply rejected notched bands based on E-shaped resonator is proposed in this letter. The basic UWB BPF is designed using interdigital coupled lines and rectangular patch multiple-mode resonator (MMR). Then, the resonance properties of the E-shaped resonator are studied. The analyzed(More)
The dynamic binding status between the thrombin and its G-quadruplex aptamers and the stability of its interaction partners were probed using our previously established fluorescence-coupled capillary electrophoresis method. A 29-nucleic acid thrombin binding aptamer was chosen as a model to study its binding affinity with the thrombin ligand. First, the(More)