Learn More
A <i>(n</i>x<i>m</i>, <i>k</i>, ¿) two-dimensional optical orthogonal code (2-D OOC), <i>C</i>, is a family of <i>n</i>x<i>m</i> (0, 1)-arrays of constant weight <i>k</i> such that <i>¿i</i>=1<i>n</i>¿<i>j</i>=0<i>m</i>-1<i>A</i>(<i>i</i>, <i>j</i>)<i>B</i>(<i>i</i>, <i>j</i>¿<i>m</i>¿) ¿ ¿ for any arrays <i>A</i>, <i>B</i> in <i>C</i> and any integer(More)
There are two kinds of perfect (k-t)-deletion-correcting codes with words of length k over an alphabet of size v, those where the coordinates may be equal and those where all coordinates must be different. We call these two kinds of codes T*(t,k,v)-codes and T(t,k,v)-codes respectively. Both a T*(t,k,v)-code and a T(t,k,v)-code are capable of correcting any(More)
  • 1