Learn More
Domain transfer learning, which learns a target classifier using labeled data from a different distribution, has shown promising value in knowledge discovery yet still been a challenging problem. Most previous works designed adaptive classifiers by exploring two learning strategies independently: distribution adaptation and label propagation. In this paper,(More)
Recent studies reveal that a deep neural network can learn transferable features which generalize well to novel tasks for domain adaptation. However , as deep features eventually transition from general to specific along the network, the feature transferability drops significantly in higher layers with increasing domain discrepancy. Hence, it is critical to(More)
Transfer learning is established as an effective technology in computer vision for leveraging rich labeled data in the source domain to build an accurate classifier for the target domain. However, most prior methods have not simultaneously reduced the difference in both the marginal distribution and conditional distribution between domains. In this paper,(More)
Visual domain adaptation, which learns an accurate classifier for a new domain using labeled images from an old domain, has shown promising value in computer vision yet still been a challenging problem. Most prior works have explored two learning strategies independently for domain adaptation: feature matching and instance reweighting. In this paper, we(More)
Though widely utilized for facilitating image management, user-provided image tags are usually incomplete and insufficient to describe the whole semantic content of corresponding images, resulting in performance degradations in tag-dependent applications and thus necessitating effective tag completion methods. In this paper, we propose a novel scheme(More)
Sparse coding learns a set of basis functions such that each input signal can be well approximated by a linear combination of just a few of the bases. It has attracted increasing interest due to its state-of-the-art performance in BoW based image representation. However, when labeled and unlabeled images are sampled from different distributions, they may be(More)
Transfer learning is established as an effective technology to leverage rich labeled data from some source domain to build an accurate classifier for the target domain. The basic assumption is that the input domains may share certain knowledge structure, which can be encoded into common latent factors and extracted by preserving important property of(More)
Transfer learning aims to leverage the knowledge in the source domain to facilitate the learning tasks in the target domain. It has attracted extensive research interests recently due to its effectiveness in a wide range of applications. The general idea of the existing methods is to utilize the common latent structure shared across domains as the bridge(More)
Due to the storage and retrieval efficiency, hashing has been widely deployed to approximate nearest neighbor search for large-scale multimedia retrieval. Supervised hashing, which improves the quality of hash coding by exploiting the semantic similarity on data pairs, has received increasing attention recently. For most existing supervised hashing methods(More)