Learn More
Graphene has emerged as interesting nanomaterials with promising applications in a range of fields including biomedicine. In this work, for the first time we study the long-term in vivo biodistribution of (125)I-labeled nanographene sheets (NGS) functionalized with polyethylene glycol (PEG) and systematically examine the potential toxicity of graphene over(More)
Photothermal therapy as a physical treatment approach to destruct cancer has emerged as an alternative of currently used cancer therapies. Previously we have shown that polyethylene glycol (PEG) functionalized nano-graphene oxide (nGO-PEG) with strong optical absorption in the near-infrared (NIR) region was a powerful photothermal agent for in vivo cancer(More)
Graphene oxide (GO) and its functionalized derivatives have attracted great attention in biomedicine in recent years. A number of groups including ours have studied the in vivo behaviors of functionalized nano-graphene after intravenous injection or inhalation, and uncovered the surface coating & size dependent biodistribution and toxicology profiles for(More)
Oxidization of carbon nanotubes by a mixed acid has been utilized as a standard method to functionalize carbon nanomaterials for years. Here, the products obtained from carbon nanotubes and graphite after a mixed-acid treatment are carefully studied. Nearly identical carbon dot (Cdot) products with diameters of 3-4 nm are produced using this approach from a(More)
An elevated rate of glucose consumption and the dependency on aerobic glycolysis for ATP generation have long been observed in cancer cells, a phenomenon known as the Warburg effect. the altered energy metabolism in cancer cells provides an attractive opportunity for developing novel cancer therapeutic strategies. Lactate dehydrogenase (LDH), which(More)
1α,25-Dihydroxyvitamin D3 [1,25(OH) 2 D 3 ] has been demonstrated to inhibit the growth of cancer cells. However, carboplatin is the most widely used chemothera-peutic agent to treat cancer. We hypothesized that vitamin D may enhance the antiproliferative effects of carboplatin, and tested this hypothesis in ovarian cancer SKOV-3 cells treated with(More)
Higher rate of glycolysis has been long observed in cancer cells, as a vital enzyme in glycolysis, lactate dehydrogenase A (LDH-A) has been shown with great potential as an anti-cancer target. Accumulating evidence indicates that inhibition of LDH-A induces apoptosis mediated by oxidative stress in cancer cells. To date, it's still unclear that whether(More)
We report a detailed 57Fe Mössbauer study of lanthanum doped CaFe2As2 superconductors. The quadrupole splitting distribution (QSD) method was adopted to analyze the Mössbauer spectra of Ca(1-x) La(x)Fe2As2 (x  =  0.2, 0.3) single crystals. For both compounds we observed two QSD contributions centered at 0.31 mm s(-1) and  -0.32 mm s(-1) at room temperature.(More)
Ba(Fe(1-x)Mn(x))2As2 compounds with x = 0.016 and 0.064 have been studied by (57)Fe Mössbauer spectroscopy in the temperature range from 30 to 300 K. The unusual magnetic splitting spectra at lower temperatures have been analyzed using the distribution of hyperfine field. It is found that the influence of Mn dopant spreads beyond the nearest Fe magnetic(More)
Tamoxifen (TAM) is the earliest non-steroidal antiestrogen drug, which has been widely used in endocrine therapy targeting breast cancer. The aim of the present study was to investigate the effect of TAM on the proliferation, apoptosis, migration and invasion of the estrogen‑positive (ER+) breast cancer cell line MCF‑7 in vitro, and elucidate its(More)