Jianling Zhang

Learn More
The mesoporous metal-organic frameworks are a family of materials that have pore sizes ranging from 2 to 50 nm, which have shown promising applications in catalysis, adsorption, chemical sensing and so on. The preparation of mesoporous metal-organic frameworks usually needs the supramolecular or cooperative template strategy. Here we report the(More)
Here we demonstrate the in situ formation of ultra-small gold nanoparticles (<2 nm) finely dispersed on a binary solid carrier, i.e. a mesoporous SiO2 coated graphene oxide (GO) nanosheet. The as-synthesized Au-SiO2-GO composite has shown high catalytic activity and reusability for chemical reactions under mild conditions.
To design high-internal-phase emulsion (HIPE) systems is of great interest from the viewpoints of both fundamental researches and practical applications. Here we demonstrate for the first time the utilization of metal-organic framework (MOF) for HIPE formation. By stirring the mixture of water, oil and MOF at room temperature, the HIPE stabilized by the(More)
The construction of three-dimensional graphene aerogels (GAs) is of great importance owing to their outstanding properties for various applications. Up to now, the combination of ultralow weight and super mechanical strength for GA remains a great challenge. Here we demonstrate the fabrication of cellular GAs by a facile, easily controlled and versatile(More)
Mesoporous polymers with tunable large mesopores and thin mesopore walls were synthesized through a CO2-swollen micelle templating route. The mesopore size and porosity properties of the polymers can be easily modulated by adjusting CO2 pressure. The as-synthesized mesocellular polymers are excellent candidate supports for preparing heterogeneous catalysts.
Herein it was found that CO(2) could trigger an O/W to W/O emulsion inversion via a W/O/W nanoemulsion. In comparison with the conventionally used liquid or solid additives, the unusual advantage of this method is that the emulsion morphologies can be switched reversibly by the control of CO(2) pressure. Besides, CO(2) can be easily removed by(More)
  • 1