Learn More
Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale(More)
MOTIVATION Protein beta-sheets play a fundamental role in protein structure, function, evolution and bioengineering. Accurate prediction and assembly of protein beta-sheets, however, remains challenging because protein beta-sheets require formation of hydrogen bonds between linearly distant residues. Previous approaches for predicting beta-sheet topological(More)
SCRATCH is a server for predicting protein tertiary structure and structural features. The SCRATCH software suite includes predictors for secondary structure, relative solvent accessibility, disordered regions, domains, disulfide bridges, single mutation stability, residue contacts versus average, individual residue contacts and tertiary structure. The user(More)
Intrinsically disordered regions in proteins are relatively frequent and important for our understanding of molecular recognition and assembly, and protein structure and function. From an algorithmic standpoint, flagging large disordered regions is also important for ab initio protein structure prediction methods. Here we first extract a curated,(More)
Predicting protein residue-residue contacts is an important 2D prediction task. It is useful for ab initio structure prediction and understanding protein folding. In spite of steady progress over the past decade, contact prediction remains still largely unsolved. Here we develop a new contact map predictor (SVMcon) that uses support vector machines to(More)
Accurate prediction of protein stability changes resulting from single amino acid mutations is important for understanding protein structures and designing new proteins. We use support vector machines to predict protein stability changes for single amino acid mutations leveraging both sequence and structural information. We evaluate our approach using(More)
The formation of disulphide bridges between cysteines plays an important role in protein folding, structure, function, and evolution. Here, we develop new methods for predicting disulphide bridges in proteins. We first build a large curated data set of proteins containing disulphide bridges to extract relevant statistics. We then use kernel methods to(More)
Multiple protein templates are commonly used in manual protein structure prediction. However, few automated algorithms of selecting and combining multiple templates are available. Here we develop an effective multi-template combination algorithm for protein comparative modeling. The algorithm selects templates according to the similarity significance of the(More)
Plant functional genomic studies have largely measured the response of whole plants, organs and tissues, resulting in the dilution of the signal from individual cells. Methods are needed where the full repertoire of functional genomic tools can be applied to a single plant cell. Root hair cells are an attractive model to study the biology of a single,(More)
Protein domains are the structural and functional units of proteins. The ability to parse protein chains into different domains is important for protein classification and for understanding protein structure, function, and evolution. Here we use machine learning algorithms, in the form of recursive neural networks, to develop a protein domain predictor(More)